17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Delivery of cancer therapies by synthetic and bio-inspired nanovectors

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          As a complement to the clinical development of new anticancer molecules, innovations in therapeutic vectorization aim at solving issues related to tumor specificity and associated toxicities. Nanomedicine is a rapidly evolving field that offers various solutions to increase clinical efficacy and safety.

          Main

          Here are presented the recent advances for different types of nanovectors of chemical and biological nature, to identify the best suited for translational research projects. These nanovectors include different types of chemically engineered nanoparticles that now come in many different flavors of ‘smart’ drug delivery systems. Alternatives with enhanced biocompatibility and a better adaptability to new types of therapeutic molecules are the cell-derived extracellular vesicles and micro-organism-derived oncolytic viruses, virus-like particles and bacterial minicells. In the first part of the review, we describe their main physical, chemical and biological properties and their potential for personalized modifications. The second part focuses on presenting the recent literature on the use of the different families of nanovectors to deliver anticancer molecules for chemotherapy, radiotherapy, nucleic acid-based therapy, modulation of the tumor microenvironment and immunotherapy.

          Conclusion

          This review will help the readers to better appreciate the complexity of available nanovectors and to identify the most fitting “type” for efficient and specific delivery of diverse anticancer therapies.

          Related collections

          Most cited references306

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods

          Estimates of the worldwide incidence and mortality from 36 cancers and for all cancers combined for the year 2018 are now available in the GLOBOCAN 2018 database, compiled and disseminated by the International Agency for Research on Cancer (IARC). This paper reviews the sources and methods used in compiling the cancer statistics in 185 countries. The validity of the national estimates depends upon the representativeness of the source information, and to take into account possible sources of bias, uncertainty intervals are now provided for the estimated sex- and site-specific all-ages number of new cancer cases and cancer deaths. We briefly describe the key results globally and by world region. There were an estimated 18.1 million (95% UI: 17.5-18.7 million) new cases of cancer (17 million excluding non-melanoma skin cancer) and 9.6 million (95% UI: 9.3-9.8 million) deaths from cancer (9.5 million excluding non-melanoma skin cancer) worldwide in 2018.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding the tumor immune microenvironment (TIME) for effective therapy

            The clinical successes in immunotherapy have been both astounding and at the same time unsatisfactory. Countless patients with varied tumor types have seen pronounced clinical response with immunotherapeutic intervention; however, many more patients have experienced minimal or no clinical benefit when provided the same treatment. As technology has advanced, so has the understanding of the complexity and diversity of the immune context of the tumor microenvironment and its influence on response to therapy. It has been possible to identify different subclasses of immune environment that have an influence on tumor initiation and response and therapy; by parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient’s tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication

              The ability of exosomes to transfer cargo from donor to acceptor cells, thereby triggering phenotypic changes in the latter, has generated substantial interest in the scientific community. However, the extent to which exosomes differ from other extracellular vesicles in terms of their biogenesis and functions remains ill-defined. Here, we discuss the current knowledge on the specificities of exosomes and other types of extracellular vesicles, and their roles as important agents of cell-to-cell communication.
                Bookmark

                Author and article information

                Contributors
                nicolas.boisgerault@inserm.fr
                Journal
                Mol Cancer
                Mol Cancer
                Molecular Cancer
                BioMed Central (London )
                1476-4598
                24 March 2021
                24 March 2021
                2021
                : 20
                : 55
                Affiliations
                GRID grid.4817.a, Université de Nantes, Inserm, ; CRCINA, F-44000 Nantes, France
                Author information
                http://orcid.org/0000-0002-3391-6504
                Article
                1346
                10.1186/s12943-021-01346-2
                7987750
                33761944
                9eda99f2-fd1d-4870-8e9d-8eb9df3bf3f0
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 4 December 2020
                : 5 March 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100009371, Université de Nantes;
                Funded by: FundRef http://dx.doi.org/10.13039/501100013414, Conseil Régional des Pays de la Loire;
                Funded by: FundRef http://dx.doi.org/10.13039/501100004099, Ligue Contre le Cancer;
                Funded by: Agence Nationale de la Recherche
                Award ID: ANR-20-CE18-0009-01
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2021

                Oncology & Radiotherapy
                cancer therapy,vectorization,nanomedicine,drug delivery,targeting,virus,nanoparticle,vesicle

                Comments

                Comment on this article