1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Enzymatically Activated Autonomous-Motion DNAzyme Signal Amplification Strategy for Tumor Cell-Specific Molecular Imaging with Improved Spatial Specificity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Strategies for achieving tumor-specific molecular imaging based on signal amplification hold great potential for evaluating the risk of tumor metastasis and progression. However, traditional amplification strategies are still constrained with limited tumor specificity because of the off-tumor signal leakage. Herein, an endogenous enzyme-activated autonomous-motion DNAzyme signal amplification strategy (E-DNAzyme) was rationally designed for tumor-specific molecular imaging with improved spatial specificity. The sensing function of E-DNAzyme can be specifically activated by the overexpressed apurinic/apyrimidinic endonuclease 1 (APE1) in the cytoplasm of tumor cells instead of normal cells, ensuring the tumor cell-specific molecular imaging with improved spatial specificity. Of note, benefiting from the target analogue-triggered autonomous motion of the DNAzyme signal amplification strategy, the detection limit can be decreased by approx. ∼7.8 times. Moreover, the discrimination ratio of tumor/normal cells of the proposed E-DNAzyme was ∼3.44-fold higher than the traditional amplification strategy, indicating the prospect of this universal design for tumor-specific molecular imaging.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA signatures in human cancers.

          MicroRNA (miRNA) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein-coding genes involved in cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination [corrected].

            Non-coding apurinic/apyrimidinic (AP) sites in DNA are continually created in cells both spontaneously and by damage-specific DNA glycosylases. The biologically critical human base excision repair enzyme APE1 cleaves the DNA sugar-phosphate backbone at a position 5' of AP sites to prime DNA repair synthesis. Here we report three co-crystal structures of human APE1 bound to abasic DNA which show that APE1 uses a rigid, pre-formed, positively charged surface to kink the DNA helix and engulf the AP-DNA strand. APE1 inserts loops into both the DNA major and minor grooves and binds a flipped-out AP site in a pocket that excludes DNA bases and racemized beta-anomer AP sites. Both the APE1 active-site geometry and a complex with cleaved AP-DNA and Mn2+ support a testable structure-based catalytic mechanism. Alanine substitutions of the residues that penetrate the DNA helix unexpectedly show that human APE1 is structurally optimized to retain the cleaved DNA product. These structural and mutational results show how APE1 probably displaces bound glycosylases and retains the nicked DNA product, suggesting that APE1 acts in vivo to coordinate the orderly transfer of unstable DNA damage intermediates between the excision and synthesis steps of DNA repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates.

              Intracellular delivery of nucleic acids as gene regulation agents typically requires the use of cationic carriers or viral vectors, yet issues related to cellular toxicity or immune responses hamper their attractiveness as therapeutic candidates. The discovery that spherical nucleic acids (SNAs), polyanionic structures comprised of densely packed, highly oriented oligonucleotides covalently attached to the surface of nanoparticles, can effectively enter more than 50 different cell types presents a potential strategy for overcoming the limitations of conventional transfection agents. Unfortunately, little is known about the mechanism of endocytosis of SNAs, including the pathway of entry and specific proteins involved. Here, we demonstrate that the rapid cellular uptake kinetics and intracellular transport of SNAs stem from the arrangement of oligonucleotides into a 3D architecture, which supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. These results reinforce the notion that SNAs can serve as therapeutic payloads and targeting structures to engage biological pathways not readily accessible with linear oligonucleotides.
                Bookmark

                Author and article information

                Contributors
                Journal
                Analytical Chemistry
                Anal. Chem.
                American Chemical Society (ACS)
                0003-2700
                1520-6882
                June 20 2023
                June 06 2023
                June 20 2023
                : 95
                : 24
                : 9388-9395
                Affiliations
                [1 ]Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
                [2 ]School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, P. R. China
                [3 ]College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
                Article
                10.1021/acs.analchem.3c01963
                37279075
                9ef13744-a712-4ae7-a8cb-d6ea6791f2d3
                © 2023

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article