27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The 40-year history of modeling active dendrites in cerebellar Purkinje cells: emergence of the first single cell “community model”

      review-article
      Frontiers in Computational Neuroscience
      Frontiers Media S.A.
      Purkinje cells, modeling, cerebellum, cerebellar, dendrite, active conductnaces, history

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The subject of the effects of the active properties of the Purkinje cell dendrite on neuronal function has been an active subject of study for more than 40 years. Somewhat unusually, some of these investigations, from the outset have involved an interacting combination of experimental and model-based techniques. This article recounts that 40-year history, and the view of the functional significance of the active properties of the Purkinje cell dendrite that has emerged. It specifically considers the emergence from these efforts of what is arguably the first single cell “community” model in neuroscience. The article also considers the implications of the development of this model for future studies of the complex properties of neuronal dendrites.

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: not found

          A theory of cerebellar cortex.

          D. Marr (1969)
          1. A detailed theory of cerebellar cortex is proposed whose consequence is that the cerebellum learns to perform motor skills. Two forms of input-output relation are described, both consistent with the cortical theory. One is suitable for learning movements (actions), and the other for learning to maintain posture and balance (maintenance reflexes).2. It is known that the cells of the inferior olive and the cerebellar Purkinje cells have a special one-to-one relationship induced by the climbing fibre input. For learning actions, it is assumed that:(a) each olivary cell responds to a cerebral instruction for an elemental movement. Any action has a defining representation in terms of elemental movements, and this representation has a neural expression as a sequence of firing patterns in the inferior olive; and(b) in the correct state of the nervous system, a Purkinje cell can initiate the elemental movement to which its corresponding olivary cell responds.3. Whenever an olivary cell fires, it sends an impulse (via the climbing fibre input) to its corresponding Purkinje cell. This Purkinje cell is also exposed (via the mossy fibre input) to information about the context in which its olivary cell fired; and it is shown how, during rehearsal of an action, each Purkinje cell can learn to recognize such contexts. Later, when the action has been learnt, occurrence of the context alone is enough to fire the Purkinje cell, which then causes the next elemental movement. The action thus progresses as it did during rehearsal.4. It is shown that an interpretation of cerebellar cortex as a structure which allows each Purkinje cell to learn a number of contexts is consistent both with the distributions of the various types of cell, and with their known excitatory or inhibitory natures. It is demonstrated that the mossy fibre-granule cell arrangement provides the required pattern discrimination capability.5. The following predictions are made.(a) The synapses from parallel fibres to Purkinje cells are facilitated by the conjunction of presynaptic and climbing fibre (or post-synaptic) activity.(b) No other cerebellar synapses are modifiable.(c) Golgi cells are driven by the greater of the inputs from their upper and lower dendritic fields.6. For learning maintenance reflexes, 2(a) and 2(b) are replaced by2'. Each olivary cell is stimulated by one or more receptors, all of whose activities are usually reduced by the results of stimulating the corresponding Purkinje cell.7. It is shown that if (2') is satisfied, the circuit receptor --> olivary cell --> Purkinje cell --> effector may be regarded as a stabilizing reflex circuit which is activated by learned mossy fibre inputs. This type of reflex has been called a learned conditional reflex, and it is shown how such reflexes can solve problems of maintaining posture and balance.8. 5(a), and either (2) or (2') are essential to the theory: 5(b) and 5(c) are not absolutely essential, and parts of the theory could survive the disproof of either.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A theory of cerebellar function

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cerebellar circuitry as a neuronal machine.

              Masao ITO (2006)
              Shortly after John Eccles completed his studies of synaptic inhibition in the spinal cord, for which he was awarded the 1963 Nobel Prize in physiology/medicine, he opened another chapter of neuroscience with his work on the cerebellum. From 1963 to 1967, Eccles and his colleagues in Canberra successfully dissected the complex neuronal circuitry in the cerebellar cortex. In the 1967 monograph, "The Cerebellum as a Neuronal Machine", he, in collaboration with Masao Ito and Janos Szentágothai, presented blue-print-like wiring diagrams of the cerebellar neuronal circuitry. These stimulated worldwide discussions and experimentation on the potential operational mechanisms of the circuitry and spurred theoreticians to develop relevant network models of the machinelike function of the cerebellum. In following decades, the neuronal machine concept of the cerebellum was strengthened by additional knowledge of the modular organization of its structure and memory mechanism, the latter in the form of synaptic plasticity, in particular, long-term depression. Moreover, several types of motor control were established as model systems representing learning mechanisms of the cerebellum. More recently, both the quantitative preciseness of cerebellar analyses and overall knowledge about the cerebellum have advanced considerably at the cellular and molecular levels of analysis. Cerebellar circuitry now includes Lugaro cells and unipolar brush cells as additional unique elements. Other new revelations include the operation of the complex glomerulus structure, intricate signal transduction for synaptic plasticity, silent synapses, irregularity of spike discharges, temporal fidelity of synaptic activation, rhythm generators, a Golgi cell clock circuit, and sensory or motor representation by mossy fibers and climbing fibers. Furthermore, it has become evident that the cerebellum has cognitive functions, and probably also emotion, as well as better-known motor and autonomic functions. Further cerebellar research is required for full understanding of the cerebellum as a broad learning machine for neural control of these functions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Comput Neurosci
                Front Comput Neurosci
                Front. Comput. Neurosci.
                Frontiers in Computational Neuroscience
                Frontiers Media S.A.
                1662-5188
                20 October 2015
                2015
                : 9
                : 129
                Affiliations
                [1]Numedeon, Inc. Ashland, OR, USA
                Author notes

                Edited by: Sergey M. Korogod, International Center for Molecular Physiology, National Academy of Sciences of Ukraine, Ukraine

                Reviewed by: Benjamin Torben-Nielsen, University of Hertfordshire, UK; Fahad Sultan, University Tübingen, Germany

                *Correspondence: James M. Bower jim@ 123456numedeon.com
                Article
                10.3389/fncom.2015.00129
                4611061
                26539104
                9ef4cf6a-67c5-410b-bf2f-90dcfe779107
                Copyright © 2015 Bower.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 November 2014
                : 02 October 2015
                Page count
                Figures: 15, Tables: 0, Equations: 0, References: 180, Pages: 18, Words: 14856
                Categories
                Neuroscience
                Review

                Neurosciences
                purkinje cells,modeling,cerebellum,cerebellar,dendrite,active conductnaces,history
                Neurosciences
                purkinje cells, modeling, cerebellum, cerebellar, dendrite, active conductnaces, history

                Comments

                Comment on this article