50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Factors Controlling Soil Microbial Biomass and Bacterial Diversity and Community Composition in a Cold Desert Ecosystem: Role of Geographic Scale

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding controls over the distribution of soil bacteria is a fundamental step toward describing soil ecosystems, understanding their functional capabilities, and predicting their responses to environmental change. This study investigated the controls on the biomass, species richness, and community structure and composition of soil bacterial communities in the McMurdo Dry Valleys, Antarctica, at local and regional scales. The goals of the study were to describe the relationships between abiotic characteristics and soil bacteria in this unique, microbially dominated environment, and to test the scale dependence of these relationships in a low complexity ecosystem. Samples were collected from dry mineral soils associated with snow patches, which are a significant source of water in this desert environment, at six sites located in the major basins of the Taylor and Wright Valleys. Samples were analyzed for a suite of characteristics including soil moisture, pH, electrical conductivity, soil organic matter, major nutrients and ions, microbial biomass, 16 S rRNA gene richness, and bacterial community structure and composition. Snow patches created local biogeochemical gradients while inter-basin comparisons encompassed landscape scale gradients enabling comparisons of microbial controls at two distinct spatial scales. At the organic carbon rich, mesic, low elevation sites Acidobacteria and Actinobacteria were prevalent, while Firmicutes and Proteobacteria were dominant at the high elevation, low moisture and biomass sites. Microbial parameters were significantly related with soil water content and edaphic characteristics including soil pH, organic matter, and sulfate. However, the magnitude and even the direction of these relationships varied across basins and the application of mixed effects models revealed evidence of significant contextual effects at local and regional scales. The results highlight the importance of the geographic scale of sampling when determining the controls on soil microbial community characteristics.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Toward an ecological classification of soil bacteria.

          Although researchers have begun cataloging the incredible diversity of bacteria found in soil, we are largely unable to interpret this information in an ecological context, including which groups of bacteria are most abundant in different soils and why. With this study, we examined how the abundances of major soil bacterial phyla correspond to the biotic and abiotic characteristics of the soil environment to determine if they can be divided into ecologically meaningful categories. To do this, we collected 71 unique soil samples from a wide range of ecosystems across North America and looked for relationships between soil properties and the relative abundances of six dominant bacterial phyla (Acidobacteria, Bacteroidetes, Firmicutes, Actinobacteria, alpha-Proteobacteria, and the beta-Proteobacteria). Of the soil properties measured, net carbon (C) mineralization rate (an index of C availability) was the best predictor of phylum-level abundances. There was a negative correlation between Acidobacteria abundance and C mineralization rates (r2 = 0.26, P < 0.001), while the abundances of beta-Proteobacteria and Bacteroidetes were positively correlated with C mineralization rates (r2 = 0.35, P < 0.001 and r2 = 0.34, P < 0.001, respectively). These patterns were explored further using both experimental and meta-analytical approaches. We amended soil cores from a specific site with varying levels of sucrose over a 12-month period to maintain a gradient of elevated C availabilities. This experiment confirmed our survey results: there was a negative relationship between C amendment level and the abundance of Acidobacteria (r2 = 0.42, P < 0.01) and a positive relationship for both Bacteroidetes and beta-Proteobacteria (r2 = 0.38 and 0.70, respectively; P < 0.01 for each). Further support for a relationship between the relative abundances of these bacterial phyla and C availability was garnered from an analysis of published bacterial clone libraries from bulk and rhizosphere soils. Together our survey, experimental, and meta-analytical results suggest that certain bacterial phyla can be differentiated into copiotrophic and oligotrophic categories that correspond to the r- and K-selected categories used to describe the ecological attributes of plants and animals. By applying the copiotroph-oligotroph concept to soil microorganisms we can make specific predictions about the ecological attributes of various bacterial taxa and better understand the structure and function of soil bacterial communities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drivers of bacterial beta-diversity depend on spatial scale.

            The factors driving β-diversity (variation in community composition) yield insights into the maintenance of biodiversity on the planet. Here we tested whether the mechanisms that underlie bacterial β-diversity vary over centimeters to continental spatial scales by comparing the composition of ammonia-oxidizing bacteria communities in salt marsh sediments. As observed in studies of macroorganisms, the drivers of salt marsh bacterial β-diversity depend on spatial scale. In contrast to macroorganism studies, however, we found no evidence of evolutionary diversification of ammonia-oxidizing bacteria taxa at the continental scale, despite an overall relationship between geographic distance and community similarity. Our data are consistent with the idea that dispersal limitation at local scales can contribute to β-diversity, even though the 16S rRNA genes of the relatively common taxa are globally distributed. These results highlight the importance of considering multiple spatial scales for understanding microbial biogeography.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes.

              The severe environmental stresses of the Arctic may have promoted unique soil bacterial communities compared with those found in lower latitude environments. Here, we present a comprehensive analysis of the biogeography of soil bacterial communities in the Arctic using a high resolution bar-coded pyrosequencing technique. We also compared arctic soils with soils from a wide range of more temperate biomes to characterize variability in soil bacterial communities across the globe. We show that arctic soil bacterial community composition and diversity are structured according to local variation in soil pH rather than geographical proximity to neighboring sites, suggesting that local environmental heterogeneity is far more important than dispersal limitation in determining community-level differences. Furthermore, bacterial community composition had similar levels of variability, richness and phylogenetic diversity within arctic soils as across soils from a wide range of lower latitudes, strongly suggesting a common diversity structure within soil bacterial communities around the globe. These results contrast with the well-established latitudinal gradients in animal and plant diversity, suggesting that the controls on bacterial community distributions are fundamentally different from those observed for macro-organisms and that our biome definitions are not useful for predicting variability in soil bacterial communities across the globe. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                18 June 2013
                : 8
                : 6
                : e66103
                Affiliations
                [1 ]Department of Biology, University of New Mexico, Albuquerque New Mexico, United States of America
                [2 ]Department of Psychology, University of South Carolina, Columbia, South Carolina, United States of America
                [3 ]Department of Biological Sciences, Virginia Technological Institute, Blacksburg Virginia, United States of America
                [4 ]Department of Civil & Environmental Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
                [5 ]Department of Crop and Soil Science, Oregon State University, Corvallis Oregon, United States of America
                Argonne National Laboratory, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DVH MLVH MNG JEB CTV. Performed the experiments: DVH MLVH MNG JEB LHZ AA KG CTV. Analyzed the data: DVH MLVH LHZ. Contributed reagents/materials/analysis tools: MNG JEB. Wrote the paper: DVH MLVH CTV.

                Article
                PONE-D-13-07218
                10.1371/journal.pone.0066103
                3688848
                23824063
                9efe8dfc-491e-4444-a485-738d2ecf0673
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 February 2013
                : 2 May 2013
                Page count
                Pages: 12
                Funding
                This research was funded by NSF OPP grant 0838879 to JEB, MNG, and CTV. Additional support was provided by the McMurdo LTER, NSF grant 1115245. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Ecology
                Ecological Metrics
                Biomass (Ecology)
                Species Diversity
                Species Richness
                Biodiversity
                Biogeochemistry
                Biogeography
                Community Ecology
                Ecosystems
                Soil Ecology
                Microbiology
                Bacteriology
                Microbial Ecology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article