16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimal surveillance strategies for bovine tuberculosis in a low-prevalence country

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bovine tuberculosis (bTB) is a chronic disease of cattle that is difficult to control and eradicate in part due to the costly nature of surveillance and poor sensitivity of diagnostic tests. Like many countries, bTB prevalence in Uruguay has gradually declined to low levels due to intensive surveillance and control efforts over the past decades. In low prevalence settings, broad-based surveillance strategies based on routine testing may not be the most cost-effective way for controlling between-farm bTB transmission, while targeted surveillance aimed at high-risk farms may be more efficient for this purpose. To investigate the efficacy of targeted surveillance, we developed an integrated within- and between-farm bTB transmission model utilizing data from Uruguay’s comprehensive animal movement database. A genetic algorithm was used to fit uncertain parameter values, such as the animal-level sensitivity of skin testing and slaughter inspection, to observed bTB epidemiological data. Of ten alternative surveillance strategies evaluated, a strategy based on eliminating testing in low-risk farms resulted in a 40% reduction in sampling effort without increasing bTB incidence. These results can inform the design of more cost-effective surveillance programs to detect and control bTB in Uruguay and other countries with low bTB prevalence.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          A methodology for performing global uncertainty and sensitivity analysis in systems biology.

          Accuracy of results from mathematical and computer models of biological systems is often complicated by the presence of uncertainties in experimental data that are used to estimate parameter values. Current mathematical modeling approaches typically use either single-parameter or local sensitivity analyses. However, these methods do not accurately assess uncertainty and sensitivity in the system as, by default, they hold all other parameters fixed at baseline values. Using techniques described within we demonstrate how a multi-dimensional parameter space can be studied globally so all uncertainties can be identified. Further, uncertainty and sensitivity analysis techniques can help to identify and ultimately control uncertainties. In this work we develop methods for applying existing analytical tools to perform analyses on a variety of mathematical and computer models. We compare two specific types of global sensitivity analysis indexes that have proven to be among the most robust and efficient. Through familiar and new examples of mathematical and computer models, we provide a complete methodology for performing these analyses, in both deterministic and stochastic settings, and propose novel techniques to handle problems encountered during these types of analyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Infectious disease transmission and contact networks in wildlife and livestock.

            The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cattle movements and bovine tuberculosis in Great Britain.

              For 20 years, bovine tuberculosis (BTB) has been spreading in Great Britain (England, Wales and Scotland) and is now endemic in the southwest and parts of central England and in southwest Wales, and occurs sporadically elsewhere. Although its transmission pathways remain poorly understood, the disease's distribution was previously modelled statistically by using environmental variables and measures of their seasonality. Movements of infected animals have long been considered a critical factor in the spread of livestock diseases, as reflected in strict import/export regulations, the extensive movement restrictions imposed during the 2001 foot-and-mouth disease outbreak, the tracing procedures after a new case of BTB has been confirmed and the Government's recently published strategic framework for the sustainable control on BTB. Since January 2001 it has been mandatory for stock-keepers in Great Britain to notify the British Cattle Movement Service of all cattle births, movements and deaths. Here we show that movements as recorded in the Cattle Tracing System data archive, and particularly those from areas where BTB is reported, consistently outperform environmental, topographic and other anthropogenic variables as the main predictor of disease occurrence. Simulation distribution models for 2002 and 2003, incorporating all predictor categories, are presented and used to project distributions for 2004 and 2005.
                Bookmark

                Author and article information

                Contributors
                kvw@umn.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                23 June 2017
                23 June 2017
                2017
                : 7
                : 4140
                Affiliations
                [1 ]ISNI 0000000419368657, GRID grid.17635.36, Department of Veterinary Population Medicine, , University of Minnesota, ; 1365 Gortner Avenue, St. Paul, MN, 55108 USA
                [2 ]ISNI 0000000419368657, GRID grid.17635.36, Division of Health Policy and Management, School of Public Health, , University of Minnesota, ; 420 Delaware Street SE, MMC 729, Minneapolis, MN 55455 USA
                [3 ]Animal Health Bureau, Ministry of Livestock, Agriculture, and Fisheries, 1476 Constituyente, Montevideo, 11200 Uruguay
                [4 ]ISNI 0000000121657640, GRID grid.11630.35, Facultad de Veterinaria, , Universidad de la Republica, ; 1550 Alberto Lasplaces, Montevideo, 11100 Uruguay
                Article
                4466
                10.1038/s41598-017-04466-2
                5482878
                28646151
                9f06644f-b9f7-488a-a991-ba1cb20fbdb5
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 December 2016
                : 16 May 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article