11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Atmospheric CH4in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements : CH4INVERSE MODELING 2000-2010

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references68

          • Record: found
          • Abstract: not found
          • Article: not found

          The ERA-Interim reanalysis: configuration and performance of the data assimilation system

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Simultaneously mitigating near-term climate change and improving human health and food security.

            Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide-reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years.

              Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of approximately 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is approximately 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by approximately 100,000 yr glacial-interglacial cycles up to approximately 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.
                Bookmark

                Author and article information

                Journal
                Journal of Geophysical Research: Atmospheres
                J. Geophys. Res. Atmos.
                Wiley-Blackwell
                2169897X
                July 16 2013
                July 16 2013
                : 118
                : 13
                : 7350-7369
                Article
                10.1002/jgrd.50480
                9f0b5e15-d312-4009-8c0f-e141c2dd6d72
                © 2013

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article