34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autophagy genes' expression is upregulated in visceral fat in human obesity, associating with obesity-related cardio-metabolic risk. E2F1 (E2F transcription factor 1) was shown in cancer cells to transcriptionally regulate autophagy. We hypothesize that E2F1 regulates adipocyte autophagy in obesity, associating with endocrine/metabolic dysfunction, thereby, representing non-cell-cycle function of this transcription factor. E2F1 protein (N=69) and mRNA (N=437) were elevated in visceral fat of obese humans, correlating with increased expression of ATG5 (autophagy-related 5), MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β), but not with proliferation/cell-cycle markers. Elevated E2F1 mainly characterized the adipocyte fraction, whereas MKI67 (marker of proliferation Ki-67) was elevated in the stromal-vascular fraction of adipose tissue. In human visceral fat explants, chromatin-immunoprecipitation revealed body mass index (BMI)-correlated increase in E2F1 binding to the promoter of MAP1LC3B, but not to the classical cell cycle E2F1 target, CCND1 (cyclin D1). Clinically, omental fat E2F1 expression correlated with insulin resistance, circulating free-fatty-acids (FFA), and with decreased circulating ADIPOQ/adiponectin, associations attenuated by adjustment for autophagy genes. Overexpression of E2F1 in HEK293 cells enhanced promoter activity of several autophagy genes and autophagic flux, and sensitized to further activation of autophagy by TNF. Conversely, mouse embryonic fibroblast (MEF)-derived adipocytes from e2f1 knockout mice ( e2f1 −/− ) exhibited lower autophagy gene expression and flux, were more insulin sensitive, and secreted more ADIPOQ. Furthermore, e2f1 −/− MEF-derived adipocytes, and autophagy-deficient (by Atg7 siRNA) adipocytes were resistant to cytokines-induced decrease in ADIPOQ secretion. Jointly, upregulated E2F1 sensitizes adipose tissue autophagy to inflammatory stimuli, linking visceral obesity to adipose and systemic metabolic-endocrine dysfunction.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme

          Preclinical studies indicate autophagy inhibition with hydroxychloroquine (HCQ) can augment the efficacy of DNA-damaging therapy. The primary objective of this trial was to determine the maximum tolerated dose (MTD) and efficacy of HCQ in combination with radiation therapy (RT) and temozolomide (TMZ) for newly diagnosed glioblastoma (GB). A 3 + 3 phase I trial design followed by a noncomparative phase II study was conducted in GB patients after initial resection. Patients received HCQ (200 to 800 mg oral daily) with RT and concurrent and adjuvant TMZ. Quantitative electron microscopy and immunoblotting were used to assess changes in autophagic vacuoles (AVs) in peripheral blood mononuclear cells (PBMC). Population pharmacokinetic (PK) modeling enabled PK-pharmacodynamic correlations. Sixteen phase I subjects were evaluable for dose-limiting toxicities. At 800 mg HCQ/d, 3/3 subjects experienced Grade 3 and 4 neutropenia and thrombocytopenia, 1 with sepsis. HCQ 600 mg/d was found to be the MTD in this combination. The phase II cohort (n = 76) had a median survival of 15.6 mos with survival rates at 12, 18, and 24 mo of 70%, 36%, and 25%. PK analysis indicated dose-proportional exposure for HCQ. Significant therapy-associated increases in AV and LC3-II were observed in PBMC and correlated with higher HCQ exposure. These data establish that autophagy inhibition is achievable with HCQ, but dose-limiting toxicity prevented escalation to higher doses of HCQ. At HCQ 600 mg/d, autophagy inhibition was not consistently achieved in patients treated with this regimen, and no significant improvement in overall survival was observed. Therefore, a definitive test of the role of autophagy inhibition in the adjuvant setting for glioma patients awaits the development of lower-toxicity compounds that can achieve more consistent inhibition of autophagy than HCQ.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Combined MTOR and autophagy inhibition

            The combination of temsirolimus (TEM), an MTOR inhibitor, and hydroxychloroquine (HCQ), an autophagy inhibitor, augments cell death in preclinical models. This phase 1 dose-escalation study evaluated the maximum tolerated dose (MTD), safety, preliminary activity, pharmacokinetics, and pharmacodynamics of HCQ in combination with TEM in cancer patients. In the dose escalation portion, 27 patients with advanced solid malignancies were enrolled, followed by a cohort expansion at the top dose level in 12 patients with metastatic melanoma. The combination of HCQ and TEM was well tolerated, and grade 3 or 4 toxicity was limited to anorexia (7%), fatigue (7%), and nausea (7%). An MTD was not reached for HCQ, and the recommended phase II dose was HCQ 600 mg twice daily in combination with TEM 25 mg weekly. Other common grade 1 or 2 toxicities included fatigue, anorexia, nausea, stomatitis, rash, and weight loss. No responses were observed; however, 14/21 (67%) patients in the dose escalation and 14/19 (74%) patients with melanoma achieved stable disease. The median progression-free survival in 13 melanoma patients treated with HCQ 1200mg/d in combination with TEM was 3.5 mo. Novel 18-fluorodeoxyglucose positron emission tomography (FDG-PET) measurements predicted clinical outcome and provided further evidence that the addition of HCQ to TEM produced metabolic stress on tumors in patients that experienced clinical benefit. Pharmacodynamic evidence of autophagy inhibition was evident in serial PBMC and tumor biopsies only in patients treated with 1200 mg daily HCQ. This study indicates that TEM and HCQ is safe and tolerable, modulates autophagy in patients, and has significant antitumor activity. Further studies combining MTOR and autophagy inhibitors in cancer patients are warranted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo requirement for Atg5 in antigen presentation by dendritic cells.

              Autophagy is known to be important in presentation of cytosolic antigens on MHC class II (MHC II). However, the role of autophagic process in antigen presentation in vivo is unclear. Mice with dendritic cell (DC)-conditional deletion in Atg5, a key autophagy gene, showed impaired CD4(+) T cell priming after herpes simplex virus infection and succumbed to rapid disease. The most pronounced defect of Atg5(-/-) DCs was the processing and presentation of phagocytosed antigens containing Toll-like receptor stimuli for MHC class II. In contrast, cross-presentation of peptides on MHC I was intact in the absence of Atg5. Although induction of metabolic autophagy did not enhance MHC II presentation, autophagic machinery was required for optimal phagosome-to-lysosome fusion and subsequent processing of antigen for MHC II loading. Thus, our study revealed that DCs utilize autophagic machinery to optimally process and present extracellular microbial antigens for MHC II presentation. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Autophagy
                Autophagy
                KAUP
                Autophagy
                Taylor & Francis
                1554-8627
                1554-8635
                November 2015
                22 September 2015
                22 September 2015
                : 11
                : 11
                : 2074-2088
                Affiliations
                [1 ]Department of Clinical Biochemistry and Pharmacology; Faculty of Health Sciences; Ben-Gurion University of the Negev ; Beer-Sheva, Israel
                [2 ]Department of Medicine; University of Leipzig ; Leipzig, Germany
                [3 ]Soroka Academic Medical Center and Faculty of Health Sciences; Ben-Gurion University of the Negev ; Beer-Sheva, Israel
                [4 ]The Mina and Everard Goodman Faculty of Life Science; Bar-Ilan University ; Ramat Gan, Israel
                [5 ]Institute of Anatomy; University of Leipzig ; Leipzig, Germany
                [6 ]Department of Epidemiology; Ben-Gurion University of the Negev ; Beer-Sheva, Israel
                [7 ]National Institute of Biotechnology in the Negev; Ben-Gurion University of the Negev ; Beer-Sheva, Israel
                Author notes
                [* ]Correspondence to: Assaf Rudich; Email: rudich@ 123456bgu.ac.il
                Article
                1094597
                10.1080/15548627.2015.1094597
                4824599
                26391754
                9f0cb07f-f1ca-436a-805f-19172e625ab9
                © 2015 The Author(s). Published with license by Taylor & Francis Group, LLC

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

                History
                : 14 January 2015
                : 3 September 2015
                : 10 September 2015
                Page count
                Figures: 6, Tables: 2, References: 75, Pages: 15
                Categories
                Clinical Research Paper

                Molecular biology
                adipose tissue,autophagy,e2f1,obesity,stress response,transcriptional regulation
                Molecular biology
                adipose tissue, autophagy, e2f1, obesity, stress response, transcriptional regulation

                Comments

                Comment on this article