49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of cardiac-related circulating microRNA profile in human chronic heart failure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          During chronic heart failure, levels of circulating miRNAs endued with characteristics of diseased cells could be identified as biomarkers. In this study, we sought to identify cardiac-related circulating miRNAs as biomarkers of failing heart.

          Methods

          Total RNA of plasma and heart samples was extracted from 10 normal controls and 14 patients with chronic heart failure. Microarray was applied for miRNA profiles. Validation and organ/tissue distribution analysis was performed by qRT-PCR. In addition, bioinformatics analysis was performed to understand the critical roles of these cardiac-related circulating miRNAs in heart failure.

          Results

          Results showed that levels of more than half of the miRNAs dysregulated in heart failed to show any differences in plasma. Meanwhile, more than 90% of the miRNAs dysregulated in plasma remained stable in heart. Four cardiac fibroblast-derived miRNAs (miR-660-3p, miR-665, miR-1285-3p and miR-4491) were found significantly upregulated in heart and plasma during heart failure. These 4 miRNAs strongly discriminated patients from controls, and 3 of them showed significant correlations with LVEF.

          Conclusions

          This study provides global profiles of miRNAs changes in plasma and failing heart, and using a circulation-tissue miRNA profiling comparison model, we successfully identify 3 cardiac-related circulating miRNAs as potential biomarkers for diagnosis of heart failure.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: not found
          • Article: not found

          ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Circulating microRNAs are new and sensitive biomarkers of myocardial infarction

            Aims Circulating microRNAs (miRNAs) may represent a novel class of biomarkers; therefore, we examined whether acute myocardial infarction (MI) modulates miRNAs plasma levels in humans and mice. Methods and results Healthy donors (n = 17) and patients (n = 33) with acute ST-segment elevation MI (STEMI) were evaluated. In one cohort (n = 25), the first plasma sample was obtained 517 ± 309 min after the onset of MI symptoms and after coronary reperfusion with percutaneous coronary intervention (PCI); miR-1, -133a, -133b, and -499-5p were ∼15- to 140-fold control, whereas miR-122 and -375 were ∼87–90% lower than control; 5 days later, miR-1, -133a, -133b, -499-5p, and -375 were back to baseline, whereas miR-122 remained lower than control through Day 30. In additional patients (n = 8; four treated with thrombolysis and four with PCI), miRNAs and troponin I (TnI) were quantified simultaneously starting 156 ± 72 min after the onset of symptoms and at different times thereafter. Peak miR-1, -133a, and -133b expression and TnI level occurred at a similar time, whereas miR-499-5p exhibited a slower time course. In mice, miRNAs plasma levels and TnI were measured 15 min after coronary ligation and at different times thereafter. The behaviour of miR-1, -133a, -133b, and -499-5p was similar to STEMI patients; further, reciprocal changes in the expression levels of these miRNAs were found in cardiac tissue 3–6 h after coronary ligation. In contrast, miR-122 and -375 exhibited minor changes and no significant modulation. In mice with acute hind-limb ischaemia, there was no increase in the plasma level of the above miRNAs. Conclusion Acute MI up-regulated miR-1, -133a, -133b, and -499-5p plasma levels, both in humans and mice, whereas miR-122 and -375 were lower than control only in STEMI patients. These miRNAs represent novel biomarkers of cardiac damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The art of microRNA research.

              Originally identified as moderate biological modifiers, microRNAs have recently emerged as powerful regulators of diverse cellular processes with especially important roles in disease and tissue remodeling. The rapid pace of studies on microRNA regulation and function necessitates the development of suitable techniques for measuring and modulating microRNAs in different model systems. This review summarizes experimental strategies for microRNA research and highlights the strengths and weaknesses of different approaches. The development of more specific and sensitive assays will further illuminate the biology behind microRNAs and will advance opportunities to safely pursue them as therapeutic modalities.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                5 January 2016
                16 December 2015
                : 7
                : 1
                : 33-45
                Affiliations
                1 Departments of Internal Medicine and The Institute of Hypertension Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Rep. of China
                Author notes
                Correspondence to: Chen Chen, chenchen@ 123456tjh.tjmu.edu.cn
                Article
                10.18632/oncotarget.6631
                4807981
                26683101
                9f138a2f-9b31-4e72-885e-bc7b2599a8b2
                Copyright: © 2016 Li et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 September 2015
                : 20 November 2015
                Categories
                Research Paper: Gerotarget (Focus on Aging)

                Oncology & Radiotherapy
                mirna profile,heart failure,tissue,circulating,gerotarget
                Oncology & Radiotherapy
                mirna profile, heart failure, tissue, circulating, gerotarget

                Comments

                Comment on this article