53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface

      , , , , ,
      Acta Biomaterialia
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The combination of high strength, light weight, and natural biodegradability renders magnesium (Mg)-based alloys promising in orthopedic implants and cardiovascular stents. Being metallic materials, Mg and Mg alloys made for scaffolds provide the necessary mechanical support for tissue healing and cell growth in the early stage, while natural degradation and reabsorption by surrounding tissues in the later stage make an unnecessarily follow-up removal surgery. However, uncontrolled degradation may collapse the scaffolds resulting in premature implant failure, and there has been much research in controlling the degradation rates of Mg alloys. This paper reviews recent progress in the design of novel Mg alloys, surface modification and corrosion mechanisms under different conditions, and describes the effects of the structure, composition, and surface conditions on the degradation behavior in vitro and in vivo.

          Related collections

          Most cited references340

          • Record: found
          • Abstract: not found
          • Article: not found

          A review of chitin and chitosan applications

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Titanium alloys in total joint replacement--a materials science perspective.

            Increased use of titanium alloys as biomaterials is occurring due to their lower modulus, superior biocompatibility and enhanced corrosion resistance when compared to more conventional stainless steels and cobalt-based alloys. These attractive properties were a driving force for the early introduction of alpha (cpTi) and alpha + beta (Ti-6A1-4V) alloys as well as for the more recent development of new Ti-alloy compositions and orthopaedic metastable beta titanium alloys. The later possess enhanced biocompatibility, reduced elastic modulus, and superior strain-controlled and notch fatigue resistance. However, the poor shear strength and wear resistance of titanium alloys have nevertheless limited their biomedical use. Although the wear resistance of beta-Ti alloys has shown some improvement when compared to alpha + beta alloys, the ultimate utility of orthopaedic titanium alloys as wear components will require a more complete fundamental understanding of the wear mechanisms involved. This review examines current information on the physical and mechanical characteristics of titanium alloys used in artifical joint replacement prostheses, with a special focus on those issues associated with the long-term prosthetic requirements, e.g., fatigue and wear.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Surface modification of titanium, titanium alloys, and related materials for biomedical applications

                Bookmark

                Author and article information

                Journal
                Acta Biomaterialia
                Acta Biomaterialia
                Elsevier BV
                17427061
                November 2016
                November 2016
                : 45
                :
                : 2-30
                Article
                10.1016/j.actbio.2016.09.005
                27612959
                9f1c050a-2dfc-4932-a6e7-93fed7e69773
                © 2016
                History

                Comments

                Comment on this article