22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanoengineering of vaccines using natural polysaccharides

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Currently, there are over 70 licensed vaccines, which prevent the pathogenesis of around 30 viruses and bacteria. Nevertheless, there are still important challenges in this area, which include the development of more active, non-invasive, and thermo-resistant vaccines. Important biotechnological advances have led to safer subunit antigens, such as proteins, peptides, and nucleic acids. However, their limited immunogenicity has demanded potent adjuvants that can strengthen the immune response. Particulate nanocarriers hold a high potential as adjuvants in vaccination. Due to their pathogen-like size and structure, they can enhance immune responses by mimicking the natural infection process. Additionally, they can be tailored for non-invasive mucosal administration (needle-free vaccination), and control the delivery of the associated antigens to a specific location and for prolonged times, opening room for single-dose vaccination. Moreover, they allow co-association of immunostimulatory molecules to improve the overall adjuvant capacity.

          The natural and ubiquitous character of polysaccharides, together with their intrinsic immunomodulating properties, their biocompatibility, and biodegradability, justify their interest in the engineering of nanovaccines. In this review, we aim to provide a state-of-the-art overview regarding the application of nanotechnology in vaccine delivery, with a focus on the most recent advances in the development and application of polysaccharide-based antigen nanocarriers.

          Related collections

          Most cited references148

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach.

          Peptides and proteins remain poorly bioavailable upon oral administration. One of the most promising strategies to improve their oral delivery relies on their association with colloidal carriers, e.g. polymeric nanoparticles, stable in gastrointestinal tract, protective for encapsulated substances and able to modulate physicochemical characteristics, drug release and biological behavior. The mechanisms of transport of these nanoparticles across intestinal mucosa are reviewed. In particular, the influence of size and surface properties on their non-specific uptake or their targeted uptake by enterocytes and/or M cells is discussed. Enhancement of their uptake by appropriate cells, i.e. M cells by (i) modeling surface properties to optimize access to and transport by M cells (ii) identifying surface markers specific to human M cell allowing targeting to M cells and nanoparticles transcytosis is illustrated. Encouraging results upon in vivo testing are reported but low bioavailability and lack of control on absorbed dose slow down products development. Vaccines are certainly the most promising applications for orally delivered nanoparticles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The big picture on nanomedicine: the state of investigational and approved nanomedicine products.

            Developments in nanomedicine are expected to provide solutions to many of modern medicine's unsolved problems, so it is no surprise that the literature contains many articles discussing the subject. However, existing reviews tend to focus on specific sectors of nanomedicine or to take a very forward-looking stance and fail to provide a complete perspective on the current landscape. This article provides a more comprehensive and contemporary inventory of nanomedicine products. A keyword search of literature, clinical trial registries, and the Web yielded 247 nanomedicine products that are approved or in various stages of clinical study. Specific information on each was gathered, so the overall field could be described based on various dimensions, including FDA classification, approval status, nanoscale size, treated condition, nanostructure, and others. In addition to documenting the many nanomedicine products already in use in humans, this study identifies several interesting trends forecasting the future of nanomedicine. In this one of a kind review, the state of nanomedicine commercialization is discussed, concentrating only on nanomedicine-based developments and products that are either in clinical trials or have already been approved for use. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanomedicine(s) under the microscope.

              Depending on the context, nanotechnologies developed as nanomedicines (nanosized therapeutics and imaging agents) are presented as either a remarkable technological revolution already capable of delivering new diagnostics, treatments for unmanageable diseases, and opportunities for tissue repair or highly dangerous nanoparticles, nanorobots, or nanoelectronic devices that will wreak havoc in the body. The truth lies firmly between these two extremes. Rational design of "nanomedicines" began almost half a century ago, and >40 products have completed the complex journey from lab to routine clinical use. Here we critically review both nanomedicines in clinical use and emerging nanosized drugs, drug delivery systems, imaging agents, and theranostics with unique properties that promise much for the future. Key factors relevant to the design of practical nanomedicines and the regulatory mechanisms designed to ensure safe and timely realization of healthcare benefits are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biotechnol Adv
                Biotechnol. Adv
                Biotechnology Advances
                Elsevier Inc.
                0734-9750
                1873-1899
                3 June 2015
                1 November 2015
                3 June 2015
                : 33
                : 6
                : 1279-1293
                Affiliations
                [a ]Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, University of Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain
                [b ]Nano-oncologicals Lab, Translational Medical Oncology group, Health Research Institute of Santiago de Compostela (IDIS), University Hospital Complex of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
                Author notes
                Article
                S0734-9750(15)30009-4
                10.1016/j.biotechadv.2015.05.010
                7127432
                26049133
                9f232362-9492-4759-bf10-eea68f1913da
                Copyright © 2015 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 17 February 2015
                : 29 May 2015
                : 31 May 2015
                Categories
                Article

                Biotechnology
                nanovaccine,antigens,polysaccharides,antigen delivery,needle-free vaccination,adjuvants
                Biotechnology
                nanovaccine, antigens, polysaccharides, antigen delivery, needle-free vaccination, adjuvants

                Comments

                Comment on this article