5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Space-time second-quantization effects and the quantum origin of cosmological constant in covariant quantum gravity

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Space-time quantum contributions to the classical Einstein equations of General Relativity are determined. The theoretical background is provided by the non-perturbative theory of manifestly-covariant quantum gravity and the trajectory-based representation of the related quantum wave equation in terms of the Generalized Lagrangian path formalism. To reach the target an extended functional setting is introduced, permitting the treatment of a non-stationary background metric tensor allowed to depend on both space-time coordinates and a suitably-defined invariant proper-time parameter. Based on the Hamiltonian representation of the corresponding quantum hydrodynamic equations occurring in such a context, the quantum-modified Einstein field equations are obtained. As an application, the quantum origin of the cosmological constant is investigated. This is shown to be ascribed to the non-linear Bohm quantum interaction of the gravitational field with itself in vacuum and to depend generally also on the realization of the quantum probability density for the quantum gravitational field tensor. The emerging physical picture predicts a generally non-stationary quantum cosmological constant which originates from fluctuations (i.e., gradients) of vacuum quantum gravitational energy density and is consistent with the existence of quantum massive gravitons.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          An ontological basis for the quantum theory

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Relativistic magnetohydrodynamics in dynamical spacetimes: A new AMR implementation

            We have written and tested a new general relativistic magnetohydrodynamics (GRMHD) code, capable of evolving MHD fluids in dynamical spacetimes with adaptive-mesh refinement (AMR). Our code solves the Einstein-Maxwell-MHD system of coupled equations in full 3+1 dimensions, evolving the metric via the Baumgarte-Shapiro Shibata-Nakamura (BSSN) formalism and the MHD and magnetic induction equations via a conservative, high-resolution shock-capturing scheme. The induction equations are recast as an evolution equation for the magnetic vector potential, which exists on a grid that is staggered with respect to the hydrodynamic and metric variables. The divergenceless constraint div(B)=0 is enforced by the curl of the vector potential. Our MHD scheme is fully compatible with AMR, so that fluids at AMR refinement boundaries maintain div(B)=0. In simulations with uniform grid spacing, our MHD scheme is numerically equivalent to a commonly used, staggered-mesh constrained-transport scheme. We present code validation test results, both in Minkowski and curved spacetimes. They include magnetized shocks, nonlinear Alfv\'en waves, cylindrical explosions, cylindrical rotating disks, magnetized Bondi tests, and the collapse of a magnetized rotating star. Some of the more stringent tests involve black holes. We find good agreement between analytic and numerical solutions in these tests, and achieve convergence at the expected order.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Initial conditions for inflation — A short review

                Bookmark

                Author and article information

                Journal
                16 July 2018
                Article
                10.3390/sym10070287
                1807.06141
                9f293c67-1c08-4195-be95-24ccf50a0a09

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Symmetry 10, 287 (2018)
                gr-qc

                General relativity & Quantum cosmology
                General relativity & Quantum cosmology

                Comments

                Comment on this article