6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Generation of stable heading representations in diverse visual scenes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary:

          Many animals rely on an internal heading representation when navigating in varied environments 110 . How this representation is linked to the sensory cues defining different surroundings is unclear. In the fly brain, heading is represented by ‘compass neurons’ that innervate a ring-shaped structure, the ellipsoid body 3, 11, 12 . Each compass neuron receives inputs from visual-feature-selective ‘ring neurons’ 1316 , providing the ideal substrate for the extraction of directional information from a visual scene. We combine two-photon calcium imaging and optogenetics in tethered flying flies with circuit modeling to show how the correlated activity of compass and visual neurons drives plasticity 1722 , that flexibly transforms two-dimensional visual cues into a stable heading representation. We also describe how this plasticity enables the fly to convert a partial heading representation established from orienting within part of a novel setting into a complete heading representation. Our results provide mechanistic insight into memory-related computations essential for flexible navigation in varied surroundings.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Ultra-sensitive fluorescent proteins for imaging neuronal activity

          Summary Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultra-sensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies, and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5 - 40 micrometers long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.

            Hebbian models of development and learning require both activity-dependent synaptic plasticity and a mechanism that induces competition between different synapses. One form of experimentally observed long-term synaptic plasticity, which we call spike-timing-dependent plasticity (STDP), depends on the relative timing of pre- and postsynaptic action potentials. In modeling studies, we find that this form of synaptic modification can automatically balance synaptic strengths to make postsynaptic firing irregular but more sensitive to presynaptic spike timing. It has been argued that neurons in vivo operate in such a balanced regime. Synapses modifiable by STDP compete for control of the timing of postsynaptic action potentials. Inputs that fire the postsynaptic neuron with short latency or that act in correlated groups are able to compete most successfully and develop strong synapses, while synapses of longer-latency or less-effective inputs are weakened.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Independent Optical Excitation of Distinct Neural Populations

              Optogenetic tools enable the causal examination of how specific cell types contribute to brain circuit functions. A long-standing question is whether it is possible to independently activate two distinct neural populations in mammalian brain tissue. Such a capability would enable the examination of how different synapses or pathways interact to support computation. Here we report two new channelrhodopsins, Chronos and Chrimson, obtained through the de novo sequencing and physiological characterization of opsins from over 100 species of algae. Chrimson is 45 nm red-shifted relative to any previous channelrhodopsin, important for scenarios where red light would be preferred; we show minimal visual system mediated behavioral artifact in optogenetically stimulated Drosophila. Chronos has faster kinetics than any previous channelrhodopsin, yet is effectively more light-sensitive. Together, these two reagents enable crosstalk-free two-color activation of neural spiking and downstream synaptic transmission in independent neural populations in mouse brain slice.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                23 April 2021
                20 November 2019
                December 2019
                12 May 2021
                : 576
                : 7785
                : 126-131
                Affiliations
                [1 ]Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
                [2 ]Current affiliation: Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
                [3 ]Current affiliation: Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA.
                [4 ]Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
                Author notes

                Author contributions: Conceptualization: SSK, AMH, LFA and VJ; Experiments: SSK; Modeling: SSK, in collaboration with LFA, AMH and SR; Visualization: SSK, AMH and VJ; Writing (initial draft): SSK and VJ; Editing: all authors.

                Article
                NIHMS1541072
                10.1038/s41586-019-1767-1
                8115876
                31748750
                9f2b94bc-2dec-4547-80d5-c95b22a43fbe

                Reprints and permissions information is available at www.nature.com/reprints.

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article