57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Acute glaucoma is a significantly sight-threatening cause of irreversible blindness in the world characterized by a sudden and substantial intraocular pressure (IOP) increase and subsequent retinal ganglion cell (RGC) death. This study aims to explore the role of high-mobility group box 1 (HMGB1) in an acute glaucoma mouse model.

          Methods

          An acute glaucoma model was induced by a rapid and substantial increase IOP to 70 mmHg for 60 min via anterior chamber punctured and affused with Balance Salt Solution in C57BL/6 mice. Retinal tissue ischemic damage and loss of RGCs were assessed at 6, 24, 48, 72 h after high IOP treatment, and at 48 h, group with or without recombinant high-mobility group box 1 (rHMGB1), the HMGB1 inhibitor, glycyrrhizic acid (GA), and by HE and immunofluorescent staining. The nuclear factor κB (NF-κB) inhibitor, JSH-23, and caspase-8 inhibitor, Z-IETD-fmk, were injected into vitreous. Reverse transcription and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), western blotting, and immunoprecipitation were performed to evaluate the expression level of nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3), phosphor-NF-κB p65, caspase-8, caspase-1, apoptosis-associated speck-like protein containing a CARD (ASC), and interleukin-1β (IL-1β).

          Results

          HMGB1 was increased in ischemic retinal tissue during acute glaucoma as early as 6 h after rapid IOP elevation. Exogenous HMGB1 exacerbated retinal ischemic damage, RGC loss, and inhibition of endogenous HMGB1 significantly reduced the severity of disease. HMGB1 significantly induced the elevation of canonical NLRP3, ASC, caspase-1, and non-canonical capase-8-ASC inflammasome and promoted the processing of IL-1β. Furthermore, the effect of HMGB1 on NLRP3 inflammasome activation and IL-1β production was dependent on NF-κB pathway. Thus, HMGB1/caspase-8 pathway promoted the processing of IL-1β via NF-κB pathway.

          Conclusion

          The findings of this study identified a novel signaling pathway in which HMGB1, in response to acutely elevated intraocular pressure, activated the canonical NLRP3 and non-canonical caspase-8 inflammasomes and production of IL-1β during acute glaucoma development. These results provide new insights to the understanding of the innate response that contributes to pathogenesis of acute glaucoma.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Novel role of PKR in inflammasome activation and HMGB1 release

          The inflammasome regulates release of caspase activation-dependent cytokines, including IL-1β, IL-18, and high-mobility group box 1 (HMGB1) 1-5 . During the course of studying HMGB1 release mechanisms, we discovered an important role of double-stranded RNA dependent protein kinase (PKR) in inflammasome activation. Exposure of macrophages to inflammasome agonists induced PKR autophosphorylation. PKR inactivation by genetic deletion or pharmacological inhibition severely impaired inflammasome activation in response to double-stranded RNA, ATP, monosodium urate, adjuvant aluminum, rotenone, live E. coli, anthrax lethal toxin, DNA transfection, and S. Typhimurium infection. PKR deficiency significantly inhibited the secretion of IL-1beta, IL-18 and HMGB1 in E. coli-induced peritonitis. PKR physically interacts with multiple inflammasome components, including NLR family pyrin domain-containing 3 (NLRP3), NLR family pyrin domain-containing 1 (NLRP1), NLR family CARD domain-containing protein 4 (NLRC4), Absent in melanoma 2 (AIM2), and broadly regulates inflammasome activation. PKR autophosphorylation in a cell free system with recombinant NLRP3, ASC and pro-casapse-1 reconstitutes inflammasome activity. These results reveal a critical role of PKR in inflammasome activation, and indicate that it should be possible to pharmacologically target this molecule to treat inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis.

            HMGB1 is a ubiquitous nuclear protein present in almost all cell types. In addition to its intracellular functions, HMGB1 can be extracellularly released, where it mediates activation of innate immune responses, including chemotaxis and cytokine release. HMGB1 contains three conserved redox-sensitive cysteines (C23, C45, and C106); modification of these cysteines determines the bioactivity of extracellular HMGB1. Firstly, the cytokine-stimulating activity of HMGB1 requires C23 and C45 to be in a disulfide linkage, at the same time that C106 must remain in its reduced form as a thiol. This distinctive molecular conformation enables HMGB1 to bind and signal via the TLR4/MD-2 complex to induce cytokine release in macrophages. Secondly, for HMGB1 to act as a chemotactic mediator, all three cysteines must be in the reduced form. This all-thiol HMGB1 exerts its chemotactic activity to initiate inflammation by forming a heterocomplex with CXCL12; that complex binds exclusively to CXCR4 to initiate chemotaxis. Thirdly, binding of the HMGB1 to CXCR4 or to TLR4 is completely prevented by all-cysteine oxidation. Also, the initial post-translational redox modifications of HMGB1 are reversible processes, enabling HMGB1 to shift from acting as a chemotactic factor to acting as a cytokine and vice versa. Lastly, post-translational acetylation of key lysine residues within NLSs of HMGB1 affects HMGB1 to promote inflammation; hyperacetylation of HMGB1 shifts its equilibrium from a predominant nuclear location toward a cytosolic and subsequent extracellular presence. Hence, post-translational modifications of HMGB1 determine its role in inflammation and immunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-mobility group box-1 in ischemia-reperfusion injury of the heart.

              High-mobility group box-1 (HMGB1) is a nuclear factor released by necrotic cells and by activated immune cells. HMGB1 signals via members of the toll-like receptor family and the receptor for advanced glycation end products (RAGE). Although HMGB1 has been implicated in ischemia/reperfusion (I/R) injury of the liver and lung, its role in I/R injury of the heart remains unclear. Here, we demonstrate that HMGB1 acts as an early mediator of inflammation and organ damage in I/R injury of the heart. HMGB1 levels were already elevated 30 minutes after hypoxia in vitro and in ischemic injury of the heart in vivo. Treatment of mice with recombinant HMGB1 worsened I/R injury, whereas treatment with HMGB1 box A significantly reduced infarct size and markers of tissue damage. In addition, HMGB1 inhibition with recombinant HMGB1 box A suggested an involvement of the mitogen-activated protein kinases jun N-terminal kinase and extracellular signal-regulated kinase 1/2, as well as the nuclear transcription factor nuclear factor-kappaB in I/R injury. Interestingly, infarct size and markers of tissue damage were not affected by administration of recombinant HMGB1 or HMGB1 antagonists in RAGE(-/-) mice, which demonstrated significantly reduced damage in reperfused hearts compared with wild-type mice. Coincubation studies using recombinant HMGB1 in vitro induced an inflammatory response in isolated macrophages from wild-type mice but not in macrophages from RAGE(-/-) mice. HMGB1 plays a major role in the early event of I/R injury by binding to RAGE, resulting in the activation of proinflammatory pathways and enhanced myocardial injury. Therefore, blockage of HMGB1 might represent a novel therapeutic strategy in I/R injury.
                Bookmark

                Author and article information

                Contributors
                chiwei1228@aliyun.com
                chruiga@163.com
                effiemds@126.com
                ytzhu16@163.com
                yinwei@mail.sysu.edu.cn
                zhuoyh@mail.sysu.edu.cn
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                30 July 2015
                30 July 2015
                2015
                : 12
                : 137
                Affiliations
                [ ]State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 3#925 Xianlienan Road, Guangzhou, 510060 China
                [ ]Zhongshan medical college, Sun Yat-sen University, Guangzhou, 510030 China
                Article
                360
                10.1186/s12974-015-0360-2
                4518626
                26224068
                9f2baab0-9772-4725-b102-45b999681459
                © Chi et al. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 9 March 2015
                : 8 July 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Neurosciences
                acute glaucoma,hmgb1,nlrp3 inflammasome,caspase-8 inflammasome
                Neurosciences
                acute glaucoma, hmgb1, nlrp3 inflammasome, caspase-8 inflammasome

                Comments

                Comment on this article