104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CRISPR/Cas9 systems are a versatile tool for genome editing due to the highly efficient targeting of DNA sequences complementary to their RNA guide strands. However, it has been shown that RNA-guided Cas9 nuclease cleaves genomic DNA sequences containing mismatches to the guide strand. A better understanding of the CRISPR/Cas9 specificity is needed to minimize off-target cleavage in large mammalian genomes. Here we show that genomic sites could be cleaved by CRISPR/Cas9 systems when DNA sequences contain insertions (‘DNA bulge’) or deletions (‘RNA bulge’) compared to the RNA guide strand, and Cas9 nickases used for paired nicking can also tolerate bulges in one of the guide strands. Variants of single-guide RNAs (sgRNAs) for four endogenous loci were used as model systems, and their cleavage activities were quantified at different positions with 1- to 5-bp bulges. We further investigated 114 putative genomic off-target loci of 27 different sgRNAs and confirmed 15 off-target sites, each harboring a single-base bulge and one to three mismatches to the guide strand. Our results strongly indicate the need to perform comprehensive off-target analysis related to DNA and sgRNA bulges in addition to base mismatches, and suggest specific guidelines for reducing potential off-target cleavage.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient In Vivo Genome Editing Using RNA-Guided Nucleases

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing at 9 of 11 different sites tested, including two for which TALENs previously failed to induce alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-guided nucleases for genome editing in a wide range of organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.

            Numerous prokaryote genomes contain structures known as clustered regularly interspaced short palindromic repeats (CRISPRs), composed of 25-50 bp repeats separated by unique sequence spacers of similar length. CRISPR structures are found in the vicinity of four genes named cas1 to cas4. In silico analysis revealed another cluster of three genes associated with CRISPR structures in many bacterial species, named here as cas1B, cas5 and cas6, and also revealed a certain number of spacers that have homology with extant genes, most frequently derived from phages, but also derived from other extrachromosomal elements. Sequence analysis of CRISPR structures from 24 strains of Streptococcus thermophilus and Streptococcus vestibularis confirmed the homology of spacers with extrachromosomal elements. Phage sensitivity of S. thermophilus strains appears to be correlated with the number of spacers in the CRISPR locus the strain carries. The authors suggest that the spacer elements are the traces of past invasions by extrachromosomal elements, and hypothesize that they provide the cell immunity against phage infection, and more generally foreign DNA expression, by coding an anti-sense RNA. The presence of gene fragments in CRISPR structures and the nuclease motifs in cas genes of both cluster types suggests that CRISPR formation involves a DNA degradation step.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FLASH Assembly of TALENs Enables High-Throughput Genome Editing

              Engineered transcription activator-like effector nucleases (TALENs) have shown promise as facile and broadly applicable genome editing tools. However, no publicly available high-throughput method for constructing TALENs has been published and large-scale assessments of the success rate and targeting range of the technology remain lacking. Here we describe the Fast Ligation-based Automatable Solid-phase High-throughput (FLASH) platform, a rapid and cost-effective method we developed to enable large-scale assembly of TALENs. We tested 48 FLASH-assembled TALEN pairs in a human cell-based EGFP reporter system and found that all 48 possessed efficient gene modification activities. We also used FLASH to assemble TALENs for 96 endogenous human genes implicated in cancer and/or epigenetic regulation and found that 84 pairs were able to efficiently introduce targeted alterations. Our results establish the robustness of TALEN technology and demonstrate that FLASH facilitates high-throughput genome editing at a scale not currently possible with engineered zinc-finger nucleases or meganucleases.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                01 July 2014
                16 May 2014
                16 May 2014
                : 42
                : 11
                : 7473-7485
                Affiliations
                [1 ]Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
                [2 ]School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
                [3 ]Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 404 385 0373; Fax: +1 404 385 3856; Email: gang.bao@ 123456bme.gatech.edu
                Article
                10.1093/nar/gku402
                4066799
                24838573
                9f3632d5-2ab6-4446-95c5-503a5df0d291
                © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 24 April 2014
                : 17 April 2014
                : 18 December 2013
                Page count
                Pages: 13
                Categories
                Synthetic Biology and Chemistry
                Custom metadata
                2014

                Genetics
                Genetics

                Comments

                Comment on this article