49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Graphene, graphene oxide, and reduced graphene oxide have been widely considered as promising candidates for industrial and biomedical applications due to their exceptionally high mechanical stiffness and strength, excellent electrical conductivity, high optical transparency, and good biocompatibility. In this article, we reviewed several techniques that are available for the synthesis of graphene-based nanomaterials, and discussed the biocompatibility and toxicity of such nanomaterials upon exposure to mammalian cells under in vitro and in vivo conditions. Various synthesis strategies have been developed for their fabrication, generating graphene nanomaterials with different chemical and physical properties. As such, their interactions with cells and organs are altered accordingly. Conflicting results relating biocompatibility and cytotoxicity induced by graphene nanomaterials have been reported in the literature. In particular, graphene nanomaterials that are used for in vitro cell culture and in vivo animal models may contain toxic chemical residuals, thereby interfering graphene-cell interactions and complicating interpretation of experimental results. Synthesized techniques, such as liquid phase exfoliation and wet chemical oxidation, often required toxic organic solvents, surfactants, strong acids, and oxidants for exfoliating graphite flakes. Those organic molecules and inorganic impurities that are retained in final graphene products can interact with biological cells and tissues, inducing toxicity or causing cell death eventually. The residual contaminants can cause a higher risk of graphene-induced toxicity in biological cells. This adverse effect may be partly responsible for the discrepancies between various studies in the literature.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Electric Field Effect in Atomically Thin Carbon Films

          We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Graphene: Status and Prospects

            A. K. Geim (2010)
            Graphene is a wonder material with many superlatives to its name. It is the thinnest material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have the smallest effective mass (it is zero) and can travel micrometer-long distances without scattering at room temperature. Graphene can sustain current densities 6 orders higher than copper, shows record thermal conductivity and stiffness, is impermeable to gases and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a bench-top experiment. What are other surprises that graphene keeps in store for us? This review analyses recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils

              Graphene has been attracting great interest because of its distinctive band structure and physical properties. Today, graphene is limited to small sizes because it is produced mostly by exfoliating graphite. We grew large-area graphene films of the order of centimeters on copper substrates by chemical vapor deposition using methane. The films are predominantly single layer graphene with a small percentage (less than 5%) of the area having few layers, and are continuous across copper surface steps and grain boundaries. The low solubility of carbon in copper appears to help make this growth process self-limiting. We also developed graphene film transfer processes to arbitrary substrates, and dual-gated field-effect transistors fabricated on Si/SiO2 substrates showed electron mobilities as high as 4050 cm2V-1s-1 at room temperature.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                12 November 2018
                November 2018
                : 19
                : 11
                : 3564
                Affiliations
                [1 ]Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
                [2 ]Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China; liyuchao@ 123456lcu.edu.cn
                [3 ]Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
                Author notes
                [* ]Correspondence: liaocz@ 123456sustc.edu.cn (C.L.); aptjong@ 123456gmail.com (S.C.T.); Tel.: +86-755-8801-8761 (C.L.); +852-3442-7702 (S.C.T.)
                Author information
                https://orcid.org/0000-0001-8686-0113
                Article
                ijms-19-03564
                10.3390/ijms19113564
                6274822
                30424535
                9f375d06-aea2-4307-9302-b254797f709f
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 October 2018
                : 08 November 2018
                Categories
                Review

                Molecular biology
                graphene,synthesis,cell culture,biocompatibility,toxicity,impurities,apoptosis,in vitro,in vivo,oxidative stress

                Comments

                Comment on this article