40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Should I stay or should I go? Conceptual underpinnings of goal-directed actions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          All actions, even the simplest like moving an arm to grasp a pen, are associated with energy costs. Thus all mobile organisms possess the ability to evaluate resources and select those behaviors that are most likely to lead to the greatest accrual of valuable items (reward) in the near or, especially in the case of humans, distant future. The evaluation process is performed at all possible stages of the series of decisions that lead to the building of a goal-directed action or to its suppression. This is because all animals have a limited amount of energy and resources; to survive and be able to reproduce they have to minimize the costs and maximize the outcomes of their actions. These computations are at the root of behavioral flexibility. Two executive functions play a major role in generating flexible behaviors: (i) the ability to predict future outcomes of goal-directed actions; and (ii) the ability to cancel them when they are unlikely to accomplish valuable results. These two processes operate continuously during the entire course of a movement: during its genesis, its planning and even its execution, so that the motor output can be modulated or suppressed at any time before its execution. In this review, functional interactions of the extended neural network subserving generation and inhibition of goal-directed movements will be outlined, leading to the intriguing hypothesis that the performance of actions and their suppression are not specified by independent sets of brain regions. Rather, it will be proposed that acting and stopping are functions emerging from specific interactions between largely overlapping brain regions, whose activity is intimately linked (directly or indirectly) to the evaluations of pros and cons of an action. Such mechanism would allow the brain to perform as a highly efficient and flexible system, as different functions could be computed exploiting the same components operating in different configurations.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Empathy for pain involves the affective but not sensory components of pain.

          Our ability to have an experience of another's pain is characteristic of empathy. Using functional imaging, we assessed brain activity while volunteers experienced a painful stimulus and compared it to that elicited when they observed a signal indicating that their loved one--present in the same room--was receiving a similar pain stimulus. Bilateral anterior insula (AI), rostral anterior cingulate cortex (ACC), brainstem, and cerebellum were activated when subjects received pain and also by a signal that a loved one experienced pain. AI and ACC activation correlated with individual empathy scores. Activity in the posterior insula/secondary somatosensory cortex, the sensorimotor cortex (SI/MI), and the caudal ACC was specific to receiving pain. Thus, a neural response in AI and rostral ACC, activated in common for "self" and "other" conditions, suggests that the neural substrate for empathic experience does not involve the entire "pain matrix." We conclude that only that part of the pain network associated with its affective qualities, but not its sensory qualities, mediates empathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity.

            The authors present a unified account of 2 neural systems concerned with the development and expression of adaptive behaviors: a mesencephalic dopamine system for reinforcement learning and a "generic" error-processing system associated with the anterior cingulate cortex. The existence of the error-processing system has been inferred from the error-related negativity (ERN), a component of the event-related brain potential elicited when human participants commit errors in reaction-time tasks. The authors propose that the ERN is generated when a negative reinforcement learning signal is conveyed to the anterior cingulate cortex via the mesencephalic dopamine system and that this signal is used by the anterior cingulate cortex to modify performance on the task at hand. They provide support for this proposal using both computational modeling and psychophysiological experimentation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex.

              1. An oculomotor delayed-response task was used to examine the spatial memory functions of neurons in primate prefrontal cortex. Monkeys were trained to fixate a central spot during a brief presentation (0.5 s) of a peripheral cue and throughout a subsequent delay period (1-6 s), and then, upon the extinction of the fixation target, to make a saccadic eye movement to where the cue had been presented. Cues were usually presented in one of eight different locations separated by 45 degrees. This task thus requires monkeys to direct their gaze to the location of a remembered visual cue, controls the retinal coordinates of the visual cues, controls the monkey's oculomotor behavior during the delay period, and also allows precise measurement of the timing and direction of the relevant behavioral responses. 2. Recordings were obtained from 288 neurons in the prefrontal cortex within and surrounding the principal sulcus (PS) while monkeys performed this task. An additional 31 neurons in the frontal eye fields (FEF) region within and near the anterior bank of the arcuate sulcus were also studied. 3. Of the 288 PS neurons, 170 exhibited task-related activity during at least one phase of this task and, of these, 87 showed significant excitation or inhibition of activity during the delay period relative to activity during the intertrial interval. 4. Delay period activity was classified as directional for 79% of these 87 neurons in that significant responses only occurred following cues located over a certain range of visual field directions and were weak or absent for other cue directions. The remaining 21% were omnidirectional, i.e., showed comparable delay period activity for all visual field locations tested. Directional preferences, or lack thereof, were maintained across different delay intervals (1-6 s). 5. For 50 of the 87 PS neurons, activity during the delay period was significantly elevated above the neuron's spontaneous rate for at least one cue location; for the remaining 37 neurons only inhibitory delay period activity was seen. Nearly all (92%) neurons with excitatory delay period activity were directional and few (8%) were omnidirectional. Most (62%) neurons with purely inhibitory delay period activity were directional, but a substantial minority (38%) was omnidirectional. 6. Fifteen of the neurons with excitatory directional delay period activity also had significant inhibitory delay period activity for other cue directions. These inhibitory responses were usually strongest for, or centered about, cue directions roughly opposite those optimal for excitatory responses.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Syst Neurosci
                Front Syst Neurosci
                Front. Syst. Neurosci.
                Frontiers in Systems Neuroscience
                Frontiers Media S.A.
                1662-5137
                03 November 2014
                2014
                : 8
                : 206
                Affiliations
                [1] 1Istituto Neurologico Mediterraneo, IRCCS Neuromed, Pozzilli Italy
                [2] 2Department of Physiology and Pharmacology ‘V. Erspamer,’ La Sapienza University, Rome Italy
                Author notes

                Edited by: Manuel Casanova, University of Louisville, USA

                Reviewed by: Satoshi Tsujimoto, Kobe University, Japan; Mikhail Lebedev, Duke University, USA

                *Correspondence: Giovanni Mirabella, Istituto Neurologico Mediterraneo, IRCCS Neuromed, via Atinense 18, 86077 Pozzilli, Italy e-mail: giovanni.mirabella@ 123456uniroma1.it

                This article was submitted to Frontiers in Systems Neuroscience.

                Article
                10.3389/fnsys.2014.00206
                4217496
                25404898
                9f397fc7-407e-4e1c-b4ba-a647a07dd99f
                Copyright © 2014 Mirabella.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 August 2014
                : 01 October 2014
                Page count
                Figures: 9, Tables: 1, Equations: 0, References: 147, Pages: 21, Words: 0
                Categories
                Neuroscience
                Review Article

                Neurosciences
                decision-making,reward,voluntary motor control,behavioral flexibility,countermanding task,reaching arm movements

                Comments

                Comment on this article