92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Amyloid beta: structure, biology and structure-based therapeutic development

      , , , , , ,
      Acta Pharmacologica Sinica
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references226

          • Record: found
          • Abstract: found
          • Article: not found

          Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis.

          Soluble oligomers are common to most amyloids and may represent the primary toxic species of amyloids, like the Abeta peptide in Alzheimer's disease (AD). Here we show that all of the soluble oligomers tested display a common conformation-dependent structure that is unique to soluble oligomers regardless of sequence. The in vitro toxicity of soluble oligomers is inhibited by oligomer-specific antibody. Soluble oligomers have a unique distribution in human AD brain that is distinct from fibrillar amyloid. These results indicate that different types of soluble amyloid oligomers have a common structure and suggest they share a common mechanism of toxicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain.

            Amyloid-beta peptide (Abeta) interacts with the vasculature to influence Abeta levels in the brain and cerebral blood flow, providing a means of amplifying the Abeta-induced cellular stress underlying neuronal dysfunction and dementia. Systemic Abeta infusion and studies in genetically manipulated mice show that Abeta interaction with receptor for advanced glycation end products (RAGE)-bearing cells in the vessel wall results in transport of Abeta across the blood-brain barrier (BBB) and expression of proinflammatory cytokines and endothelin-1 (ET-1), the latter mediating Abeta-induced vasoconstriction. Inhibition of RAGE-ligand interaction suppresses accumulation of Abeta in brain parenchyma in a mouse transgenic model. These findings suggest that vascular RAGE is a target for inhibiting pathogenic consequences of Abeta-vascular interactions, including development of cerebral amyloidosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo.

              Two substrates of insulin-degrading enzyme (IDE), amyloid beta-protein (Abeta) and insulin, are critically important in the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2), respectively. We previously identified IDE as a principal regulator of Abeta levels in neuronal and microglial cells. A small chromosomal region containing a mutant IDE allele has been associated with hyperinsulinemia and glucose intolerance in a rat model of DM2. Human genetic studies have implicated the IDE region of chromosome 10 in both AD and DM2. To establish whether IDE hypofunction decreases Abeta and insulin degradation in vivo and chronically increases their levels, we characterized mice with homozygous deletions of the IDE gene (IDE --). IDE deficiency resulted in a >50% decrease in Abeta degradation in both brain membrane fractions and primary neuronal cultures and a similar deficit in insulin degradation in liver. The IDE -- mice showed increased cerebral accumulation of endogenous Abeta, a hallmark of AD, and had hyperinsulinemia and glucose intolerance, hallmarks of DM2. Moreover, the mice had elevated levels of the intracellular signaling domain of the beta-amyloid precursor protein, which was recently found to be degraded by IDE in vitro. Together with emerging genetic evidence, our in vivo findings suggest that IDE hypofunction may underlie or contribute to some forms of AD and DM2 and provide a mechanism for the recently recognized association among hyperinsulinemia, diabetes, and AD.
                Bookmark

                Author and article information

                Journal
                Acta Pharmacologica Sinica
                Acta Pharmacol Sin
                Springer Nature
                1671-4083
                1745-7254
                July 17 2017
                July 17 2017
                :
                :
                Article
                10.1038/aps.2017.28
                5589967
                28713158
                9f4b37d3-ed00-4983-a672-02d6d2858e47
                © 2017
                History

                Comments

                Comment on this article