81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multifunctional fructans and raffinose family oligosaccharides

      review-article
      Frontiers in Plant Science
      Frontiers Media S.A.
      antioxidant, fructan, immunity, oligosaccharide, raffinose, signaling, stress, sucrose

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fructans and raffinose family oligosaccharides (RFOs) are the two most important classes of water-soluble carbohydrates in plants. Recent progress is summarized on their metabolism (and regulation) and on their functions in plants and in food (prebiotics, antioxidants). Interest has shifted from the classic inulin-type fructans to more complex fructans. Similarly, alternative RFOs were discovered next to the classic RFOs. Considerable progress has been made in the understanding of structure–function relationships among different kinds of plant fructan metabolizing enzymes. This helps to understand their evolution from (invertase) ancestors, and the evolution and role of so-called “defective invertases.” Both fructans and RFOs can act as reserve carbohydrates, membrane stabilizers and stress tolerance mediators. Fructan metabolism can also play a role in osmoregulation (e.g., flower opening) and source–sink relationships. Here, two novel emerging roles are highlighted. First, fructans and RFOs may contribute to overall cellular reactive oxygen species (ROS) homeostasis by specific ROS scavenging processes in the vicinity of organellar membranes (e.g., vacuole, chloroplasts). Second, it is hypothesized that small fructans and RFOs act as phloem-mobile signaling compounds under stress. It is speculated that such underlying antioxidant and oligosaccharide signaling mechanisms contribute to disease prevention in plants as well as in animals and in humans.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          Galactinol and raffinose constitute a novel function to protect plants from oxidative damage.

          Galactinol synthase (GolS) is a key enzyme in the synthesis of raffinose family oligosaccharides that function as osmoprotectants in plant cells. In leaves of Arabidopsis (Arabidopsis thaliana) plants overexpressing heat shock transcription factor A2 (HsfA2), the transcription of GolS1, -2, and -4 and raffinose synthase 2 (RS2) was highly induced; thus, levels of galactinol and raffinose increased compared with those in wild-type plants under control growth conditions. In leaves of the wild-type plants, treatment with 50 mum methylviologen (MV) increased the transcript levels of not only HsfA2, but also GolS1, -2, -3, -4, and -8 and RS2, -4, -5, and -6, the total activities of GolS isoenzymes, and the levels of galactinol and raffinose. GolS1- or GolS2-overexpressing Arabidopsis plants (Ox-GolS1-11, Ox-GolS2-8, and Ox-GolS2-29) had increased levels of galactinol and raffinose in the leaves compared with wild-type plants under control growth conditions. High intracellular levels of galactinol and raffinose in the transgenic plants were correlated with increased tolerance to MV treatment and salinity or chilling stress. Galactinol and raffinose effectively protected salicylate from attack by hydroxyl radicals in vitro. These findings suggest the possibility that galactinol and raffinose scavenge hydroxyl radicals as a novel function to protect plant cells from oxidative damage caused by MV treatment, salinity, or chilling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development.

            Karen Koch (2004)
            Sucrose cleavage is vital to multicellular plants, not only for the allocation of crucial carbon resources but also for the initiation of hexose-based sugar signals in importing structures. Only the invertase and reversible sucrose synthase reactions catalyze known paths of sucrose breakdown in vivo. The regulation of these reactions and its consequences has therefore become a central issue in plant carbon metabolism. Primary mechanisms for this regulation involve the capacity of invertases to alter sugar signals by producing glucose rather than UDPglucose, and thus also two-fold more hexoses than are produced by sucrose synthase. In addition, vacuolar sites of cleavage by invertases could allow temporal control via compartmentalization. In addition, members of the gene families encoding either invertases or sucrose synthases respond at transcriptional and posttranscriptional levels to diverse environmental signals, including endogenous changes that reflect their own action (e.g. hexoses and hexose-responsive hormone systems such as abscisic acid [ABA] signaling). At the enzyme level, sucrose synthases can be regulated by rapid changes in sub-cellular localization, phosphorylation, and carefully modulated protein turnover. In addition to transcriptional control, invertase action can also be regulated at the enzyme level by highly localized inhibitor proteins and by a system that has the potential to initiate and terminate invertase activity in vacuoles. The extent, path, and site of sucrose metabolism are thus highly responsive to both internal and external environmental signals and can, in turn, dramatically alter development and stress acclimation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana.

              Raffinose family oligosaccharides (RFO) accumulating during seed development are thought to play a role in the desiccation tolerance of seeds. However, the functions of RFO in desiccation tolerance have not been elucidated. Here we examine the functions of RFO in Arabidopsis thaliana plants under drought- and cold-stress conditions, based on the analyses of function and expression of genes involved in RFO biosynthesis. Sugar analysis showed that drought-, high salinity- and cold-treated Arabidopsis plants accumulate a large amount of raffinose and galactinol, but not stachyose. Raffinose and galactinol were not detected in unstressed plants. This suggests that raffinose and galactinol are involved in tolerance to drought, high salinity and cold stresses. Galactinol synthase (GolS) catalyses the first step in the biosynthesis of RFO from UDP-galactose. We identified three stress-responsive GolS genes (AtGolS1, 2 and 3) among seven Arabidopsis GolS genes. AtGolS1 and 2 were induced by drought and high-salinity stresses, but not by cold stress. By contrast, AtGolS3 was induced by cold stress but not by drought or salt stress. All the GST fusion proteins of GST-AtGolS1, 2 and 3 expressed in Escherichia coli had galactinol synthase activities. Overexpression of AtGolS2 in transgenic Arabidopsis caused an increase in endogenous galactinol and raffinose, and showed reduced transpiration from leaves to improve drought tolerance. These results show that stress-inducible galactinol synthase plays a key role in the accumulation of galactinol and raffinose under abiotic stress conditions, and that galactinol and raffinose may function as osmoprotectants in drought-stress tolerance of plants.
                Bookmark

                Author and article information

                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                09 July 2013
                2013
                : 4
                : 247
                Affiliations
                Laboratory of Molecular Plant Biology, KU Leuven Leuven, Belgium
                Author notes

                Edited by: Yong-Ling Ruan, The University of Newcastle, Australia

                Reviewed by: Wolfram Weckwerth, University of Vienna, Austria; Prem S. Chourey, United States Department of Agriculture Agricultural Research Service, USA

                *Correspondence: Wim Van den Ende, Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, B 3001-Heverlee, Leuven, Belgium e-mail: wim.vandenende@ 123456bio.kuleuven.be

                This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

                Article
                10.3389/fpls.2013.00247
                3713406
                23882273
                9f6746bf-1697-4d14-b5a9-3daacda16b24
                Copyright © Van den Ende.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 30 March 2013
                : 19 June 2013
                Page count
                Figures: 2, Tables: 0, Equations: 1, References: 135, Pages: 11, Words: 0
                Categories
                Plant Science
                Review Article

                Plant science & Botany
                antioxidant,fructan,immunity,oligosaccharide,raffinose,signaling,stress,sucrose
                Plant science & Botany
                antioxidant, fructan, immunity, oligosaccharide, raffinose, signaling, stress, sucrose

                Comments

                Comment on this article