6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Predicting hybrid performance in rice using genomic best linear unbiased prediction

      , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genomic selection is an upgrading form of marker-assisted selection for quantitative traits, and it differs from the traditional marker-assisted selection in that markers in the entire genome are used to predict genetic values and the QTL detection step is skipped. Genomic selection holds the promise to be more efficient than the traditional marker-assisted selection for traits controlled by polygenes. Genomic selection for pure breed improvement is based on marker information and thus leads to cost-saving due to early selection before phenotypes are measured. When applied to hybrid breeding, genomic selection is anticipated to be even more efficient because genotypes of hybrids are predetermined by their inbred parents. Hybrid breeding has been an important tool to increase crop productivity. Here we proposed and applied an advanced method to predict hybrid performance, in which a subset of all potential hybrids is used as a training sample to predict trait values of all potential hybrids. The method is called genomic best linear unbiased prediction. The technology applied to hybrids is called genomic hybrid breeding. We used 278 randomly selected hybrids derived from 210 recombinant inbred lines of rice as a training sample and predicted all 21,945 potential hybrids. The average yield of top 100 selection shows a 16% increase compared with the average yield of all potential hybrids. The new strategy of marker-guided prediction of hybrid yields serves as a proof of concept for a new technology that may potentially revolutionize hybrid breeding.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: found

          Performance of genomic selection in mice.

          Selection plans in plant and animal breeding are driven by genetic evaluation. Recent developments suggest using massive genetic marker information, known as "genomic selection." There is little evidence of its performance, though. We empirically compared three strategies for selection: (1) use of pedigree and phenotypic information, (2) use of genomewide markers and phenotypic information, and (3) the combination of both. We analyzed four traits from a heterogeneous mouse population (http://gscan.well.ox.ac.uk/), including 1884 individuals and 10,946 SNP markers. We used linear mixed models, using extensions of association analysis. Cross-validation techniques were used, providing assumption-free estimates of predictive ability. Sampling of validation and training data sets was carried out across and within families, which allows comparing across- and within-family information. Use of genomewide genetic markers increased predictive ability up to 0.22 across families and up to 0.03 within families. The latter is not statistically significant. These values are roughly comparable to increases of up to 0.57 (across family) and 0.14 (within family) in accuracy of prediction of genetic value. In this data set, within-family information was more accurate than across-family information, and populational linkage disequilibrium was not a completely accurate source of information for genetic evaluation. This fact questions some applications of genomic selection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Accuracy of Genomic Selection Methods in a Standard Data Set of Loblolly Pine (Pinus taeda L.)

            Genomic selection can increase genetic gain per generation through early selection. Genomic selection is expected to be particularly valuable for traits that are costly to phenotype and expressed late in the life cycle of long-lived species. Alternative approaches to genomic selection prediction models may perform differently for traits with distinct genetic properties. Here the performance of four different original methods of genomic selection that differ with respect to assumptions regarding distribution of marker effects, including (i) ridge regression–best linear unbiased prediction (RR–BLUP), (ii) Bayes A, (iii) Bayes Cπ, and (iv) Bayesian LASSO are presented. In addition, a modified RR–BLUP (RR–BLUP B) that utilizes a selected subset of markers was evaluated. The accuracy of these methods was compared across 17 traits with distinct heritabilities and genetic architectures, including growth, development, and disease-resistance properties, measured in a Pinus taeda (loblolly pine) training population of 951 individuals genotyped with 4853 SNPs. The predictive ability of the methods was evaluated using a 10-fold, cross-validation approach, and differed only marginally for most method/trait combinations. Interestingly, for fusiform rust disease-resistance traits, Bayes Cπ, Bayes A, and RR–BLUB B had higher predictive ability than RR–BLUP and Bayesian LASSO. Fusiform rust is controlled by few genes of large effect. A limitation of RR–BLUP is the assumption of equal contribution of all markers to the observed variation. However, RR-BLUP B performed equally well as the Bayesian approaches.The genotypic and phenotypic data used in this study are publically available for comparative analysis of genomic selection prediction models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing.

              Bar-coded multiplexed sequencing approaches based on new-generation sequencing technologies provide capacity to sequence a mapping population in a single sequencing run. However, such approaches usually generate low-coverage and error-prone sequences for each line in a population. Thus, it is a significant challenge to genotype individual lines in a population for linkage map construction based on low-coverage sequences without the availability of high-quality genotype data of the parental lines. In this paper, we report a method for constructing ultrahigh-density linkage maps composed of high-quality single-nucleotide polymorphisms (SNPs) based on low-coverage sequences of recombinant inbred lines. First, all potential SNPs were identified to obtain drafts of parental genotypes using a maximum parsimonious inference of recombination, making maximum use of SNP information found in the entire population. Second, high-quality SNPs were identified by filtering out low-quality ones by permutations involving resampling of windows of SNPs followed by Bayesian inference. Third, lines in the mapping population were genotyped using the high-quality SNPs assisted by a hidden Markov model. With 0.05x genome sequence per line, an ultrahigh-density linkage map composed of bins of high-quality SNPs using 238 recombinant inbred lines derived from a cross between two rice varieties was constructed. Using this map, a quantitative trait locus for grain width (GW5) was localized to its presumed genomic region in a bin of 200 kb, confirming the accuracy and quality of the map. This method is generally applicable in genetic map construction with low-coverage sequence data.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 26 2014
                August 26 2014
                August 11 2014
                August 26 2014
                : 111
                : 34
                : 12456-12461
                Article
                10.1073/pnas.1413750111
                4151732
                25114224
                9f790d0c-bd7c-4c0d-93ac-c7ad181ae2bf
                © 2014
                History

                Comments

                Comment on this article