Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Evaluation of Drought Tolerance of the Vietnamese Soybean Cultivars Provides Potential Resources for Soybean Production and Genetic Engineering

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Drought is one of the greatest constraints to soybean production in many countries, including Vietnam. Although a wide variety of the newly produced cultivars have been produced recently in Vietnam through classical breeding to cope with water shortage, little knowledge of their molecular and physiological responses to drought has been discovered. This study was conducted to quickly evaluate drought tolerance of thirteen local soybean cultivars for selection of the best drought-tolerant cultivars for further field test. Differences in drought tolerance of cultivars were assessed by root and shoot lengths, relative water content, and drought-tolerant index under both normal and drought conditions. Our data demonstrated that DT51 is the strongest drought-tolerant genotype among all the tested cultivars, while the highest drought-sensitive phenotype was observed with MTD720. Thus, DT51 could be subjected to further yield tests in the field prior to suggesting it for use in production. Due to their contrasting drought-tolerant phenotypes, DT51 and MTD720 provide excellent genetic resources for further studies underlying mechanisms regulating drought responses and gene discovery. Our results provide vital information to support the effort of molecular breeding and genetic engineering to improve drought tolerance of soybean.

      Related collections

      Most cited references 51

      • Record: found
      • Abstract: found
      • Article: not found

      NAC proteins: regulation and role in stress tolerance.

      The plant-specific NAC (NAM, ATAF1,2 and CUC2) proteins constitute a major transcription factor family renowned for their roles in several developmental programs. Despite their highly conserved DNA-binding domains, their remarkable diversification across plants reflects their numerous functions. Lately, they have received much attention as regulators in various stress signaling pathways which may include interplay of phytohormones. This review summarizes the recent progress in research on NACs highlighting the proteins' potential for engineering stress tolerance against various abiotic and biotic challenges. We discuss regulatory components and targets of NAC proteins in the context of their prospective role for crop improvement strategies via biotechnological intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants.

         Biao Ma,  Yu Zhang,  Huai Chen (2011)
        NAC transcription factors play important roles in plant growth, development and stress responses. Previously, we identified multiple NAC genes in soybean (Glycine max). Here, we identify the roles of two genes, GmNAC11 and GmNAC20, in stress responses and other processes. The two genes were differentially induced by multiple abiotic stresses and plant hormones, and their transcripts were abundant in roots and cotyledons. Both genes encoded proteins that localized to the nucleus and bound to the core DNA sequence CGT[G/A]. In the protoplast assay system, GmNAC11 acts as a transcriptional activator, whereas GmNAC20 functions as a mild repressor; however, the C-terminal end of GmANC20 has transcriptional activation activity. Over-expression of GmNAC20 enhances salt and freezing tolerance in transgenic Arabidopsis plants; however, GmNAC11 over-expression only improves salt tolerance. Over-expression of GmNAC20 also promotes lateral root formation. GmNAC20 may regulate stress tolerance through activation of the DREB/CBF-COR pathway, and may control lateral root development by altering auxin signaling-related genes. GmNAC11 probably regulates DREB1A and other stress-related genes. The roles of the two GmNAC genes in stress tolerance were further analyzed in soybean transgenic hairy roots. These results provide a basis for genetic manipulation to improve the agronomic traits of important crops. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Physiological and molecular approaches to improve drought resistance in soybean.

          Drought stress is a major constraint to the production and yield stability of soybean [Glycine max (L.) Merr.]. For developing high yielding varieties under drought conditions, the most widely employed criterion has traditionally been direct selection for yield stability over multiple locations. However, this approach is time consuming and labor intensive, because yield is a highly quantitative trait with low heritability, and influenced by differences arising from soil heterogeneity and environmental factors. The alternative strategy of indirect selection using secondary traits has succeeded only in a few crops, due to problems with repeatability and lack of phenotyping strategies, especially for root-related traits. Considerable efforts have been directed towards identifying traits associated with drought resistance in soybean. With the availability of the whole genome sequence, physical maps, genetics and functional genomics tools, integrated approaches using molecular breeding and genetic engineering offer new opportunities for improving drought resistance in soybean. Genetic engineering for drought resistance with candidate genes has been reported in the major food crops, and efforts for developing drought-resistant soybean lines are in progress. The objective of this review is to consolidate the current knowledge of physiology, molecular breeding and functional genomics which may be influential in integrating breeding and genetic engineering approaches for drought resistance in soybean.
            Bookmark

            Author and article information

            Affiliations
            1School of Biotechnology, International University, Vietnam National University HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 70000, Vietnam
            2Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
            Author notes
            *Nguyen Phuong Thao: npthao@ 123456hcmiu.edu.vn and
            *Lam-Son Phan Tran: son.tran@ 123456riken.jp

            Academic Editor: Alberto Reis

            Journal
            Biomed Res Int
            Biomed Res Int
            BMRI
            BioMed Research International
            Hindawi Publishing Corporation
            2314-6133
            2314-6141
            2014
            7 April 2014
            : 2014
            24804248
            3997955
            10.1155/2014/809736
            Copyright © 2014 Nguyen Binh Anh Thu et al.

            This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Funding
            Funded by: Vietnam National Foundation for Science and Technology Development
            Award ID: 106.16-2011.37
            Categories
            Research Article

            Comments

            Comment on this article