96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression

      review-article
      1 , 1 ,
      Journal of Molecular Signaling
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          G protein-coupled receptors are key regulators of cellular communication, mediating the efficient coordination of a cell's responses to extracellular stimuli. When stimulated these receptors modulate the activity of a wide range of intracellular signalling pathways that facilitate the ordered development, growth and reproduction of the organism. There is now a growing body of evidence examining the mechanisms by which G protein-coupled receptors are able to regulate the expression, activity, localization and stability of cell cycle regulatory proteins that either promote or inhibit the initiation of DNA synthesis. In this review, we will detail the intracellular pathways that mediate the G protein-coupled receptor regulation of cellular proliferation, specifically the progression from the G1 phase to the S phase of the cell cycle.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Src family kinases, key regulators of signal transduction.

          The Src family of protein tyrosine kinases (SFKs) plays key roles in regulating signal transduction by a diverse set of cell surface receptors in the context of a variety of cellular environments. SFKs have evolved many ingenious molecular strategies to couple receptors with the cytoplasmic signaling machinery. The contributions to this issue of ONCOGENE describe how this machinery regulates fundamental cellular processes, including cell growth, differentiation, cell shape, migration and survival, and specialized cell signals. The pleiotropic functions of Src and Src family members underscore the importance of these kinases and explain why many of the members of this family have been identified as cellular oncogenes. In this volume, we have attempted to provide the reader with an overview of the current understanding of the function of Src family kinases in the regulation of selected cellular signaling pathways.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1.

            Accumulating evidence implicates the transcription factor NF-kappaB as a positive mediator of cell growth, but the molecular mechanism(s) involved in this process remains largely unknown. Here we use both a skeletal muscle differentiation model and normal diploid fibroblasts to gain insight into how NF-kappaB regulates cell growth and differentiation. Results obtained with the C2C12 myoblast cell line demonstrate that NF-kappaB functions as an inhibitor of myogenic differentiation. Myoblasts generated to lack NF-kappaB activity displayed defects in cellular proliferation and cell cycle exit upon differentiation. An analysis of cell cycle markers revealed that NF-kappaB activates cyclin D1 expression, and the results showed that this regulatory pathway is one mechanism by which NF-kappaB inhibits myogenesis. NF-kappaB regulation of cyclin D1 occurs at the transcriptional level and is mediated by direct binding of NF-kappaB to multiple sites in the cyclin D1 promoter. Using diploid fibroblasts, we demonstrate that NF-kappaB is required to induce cyclin D1 expression and pRb hyperphosphorylation and promote G(1)-to-S progression. Consistent with results obtained with the C2C12 differentiation model, we show that NF-kappaB also promotes cell growth in embryonic fibroblasts, correlating with its regulation of cyclin D1. These data therefore identify cyclin D1 as an important transcriptional target of NF-kappaB and reveal a mechanism to explain how NF-kappaB is involved in the early phases of the cell cycle to regulate cell growth and differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation and role of adenylyl cyclase isoforms.

              At least nine closely related isoforms of adenylyl cyclases (ACs), the enzymes responsible for the synthesis of cyclic AMP (cAMP) from ATP, have been cloned and characterized in mammals. Depending on the properties and the relative levels of the isoforms expressed in a tissue or a cell type at a specific time, extracellular signals received through the G-protein-coupled receptors can be differentially integrated. The present review deals with various aspects of such regulations, emphasizing the role of calcium/calmodulin in activating AC1 and AC8 in the central nervous system, the potential inhibitory effect of calcium on AC5 and AC6, and the changes in the expression pattern of the isoforms during development. A particular emphasis is given to the role of cAMP during drug and ethanol dependency and to some experimental limitations (pitfalls in the interpretation of cellular transfection, scarcity of the invalidation models, existence of complex macromolecular structures, etc).
                Bookmark

                Author and article information

                Journal
                J Mol Signal
                Journal of Molecular Signaling
                BioMed Central (London )
                1750-2187
                2007
                26 February 2007
                : 2
                : 2
                Affiliations
                [1 ]Department of Biochemistry, the Molecular Neuroscience Center, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China
                Article
                1750-2187-2-2
                10.1186/1750-2187-2-2
                1808056
                17319972
                9f922c3c-7ce6-4e74-b3a0-1d879b911051
                Copyright © 2007 New and Wong; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 January 2007
                : 26 February 2007
                Categories
                Review

                Molecular biology
                Molecular biology

                Comments

                Comment on this article