40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the prevalence of end-stage renal disease rising 8% per annum globally, there is an urgent need for renal regenerative strategies. The kidney is a mesodermal organ that differentiates from the intermediate mesoderm (IM) through the formation of a ureteric bud (UB) and the interaction between this bud and the adjacent IM-derived metanephric mesenchyme (MM). The nephrons arise from a nephron progenitor population derived from the MM (ref. ). The IM itself is derived from the posterior primitive streak. Although the developmental origin of the kidney is well understood, nephron formation in the human kidney is completed before birth. Hence, there is no postnatal stem cell able to replace lost nephrons. In this study, we have successfully directed the differentiation of human embryonic stem cells (hESCs) through posterior primitive streak and IM under fully chemically defined monolayer culture conditions using growth factors used during normal embryogenesis. This differentiation protocol results in the synchronous induction of UB and MM that forms a self-organizing structure, including nephron formation, in vitro. Such hESC-derived components show broad renal potential ex vivo, illustrating the potential for pluripotent-stem-cell-based renal regeneration.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development.

          Nephrons, the basic functional units of the kidney, are generated repetitively during kidney organogenesis from a mesenchymal progenitor population. Which cells within this pool give rise to nephrons and how multiple nephron lineages form during this protracted developmental process are unclear. We demonstrate that the Six2-expressing cap mesenchyme represents a multipotent nephron progenitor population. Six2-expressing cells give rise to all cell types of the main body of the nephron during all stages of nephrogenesis. Pulse labeling of Six2-expressing nephron progenitors at the onset of kidney development suggests that the Six2-expressing population is maintained by self-renewal. Clonal analysis indicates that at least some Six2-expressing cells are multipotent, contributing to multiple domains of the nephron. Furthermore, Six2 functions cell autonomously to maintain a progenitor cell status, as cap mesenchyme cells lacking Six2 activity contribute to ectopic nephron tubules, a mechanism dependent on a Wnt9b inductive signal. Taken together, our observations suggest that Six2 activity cell-autonomously regulates a multipotent nephron progenitor population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene function in mouse embryogenesis: get set for gastrulation.

            During early mouse embryogenesis, temporal and spatial regulation of gene expression and cell signalling influences lineage specification, embryonic polarity, the patterning of tissue progenitors and the morphogenetic movement of cells and tissues. Uniquely in mammals, the extraembryonic tissues are the source of signals for lineage specification and tissue patterning. Here we discuss recent discoveries about the lead up to gastrulation, including early manifestations of asymmetry, coordination of cell and tissue movements and the interactions of transcription factors and signalling activity for lineage allocation and germ-layer specification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells.

              The establishment of the primitive streak and its derivative germ layers, mesoderm and endoderm, are prerequisite steps in the formation of many tissues. To model these developmental stages in vitro, an ES cell line was established that expresses CD4 from the foxa2 locus in addition to GFP from the brachyury locus. A GFP-Bry(+) population expressing variable levels of CD4-Foxa2 developed upon differentiation of this ES cell line. Analysis of gene-expression patterns and developmental potential revealed that the CD4-Foxa2(hi)GFP-Bry(+) population displays characteristics of the anterior primitive streak, whereas the CD4-Foxa2(lo)GFP-Bry(+) cells resemble the posterior streak. Using this model, we were able to demonstrate that Wnt and TGF-beta/nodal/activin signaling simultaneously were required for the generation of the CD4-Foxa2(+)GFP-Bry(+) population. Wnt or low levels of activin-induced a posterior primitive streak population, whereas high levels of activin resulted in an anterior streak fate. Finally, sustained activin signaling was found to stimulate endoderm commitment from the CD4-Foxa2(+)GFP-Bry(+) ES cell population. These findings demonstrate that the early developmental events involved in germ-layer induction in the embryo are recapitulated in the ES cell model and uncover insights into the signaling pathways involved in the establishment of mesoderm and endoderm.
                Bookmark

                Author and article information

                Journal
                Nature Cell Biology
                Nat Cell Biol
                Springer Science and Business Media LLC
                1465-7392
                1476-4679
                January 2014
                December 15 2013
                January 2014
                : 16
                : 1
                : 118-126
                Article
                10.1038/ncb2894
                24335651
                9f93677d-e847-4f65-9f23-95bd902f1a7e
                © 2014

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article