25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Event-related potentials reveal rapid registration of features of infrequent changes during change blindness

      research-article
      1 , ,   1 , 1
      Behavioral and Brain Functions : BBF
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Change blindness refers to a failure to detect changes between consecutively presented images separated by, for example, a brief blank screen. As an explanation of change blindness, it has been suggested that our representations of the environment are sparse outside focal attention and even that changed features may not be represented at all. In order to find electrophysiological evidence of neural representations of changed features during change blindness, we recorded event-related potentials (ERPs) in adults in an oddball variant of the change blindness flicker paradigm.

          Methods

          ERPs were recorded when subjects performed a change detection task in which the modified images were infrequently interspersed (p = .2) among the frequently (p = .8) presented unmodified images. Responses to modified and unmodified images were compared in the time window of 60-100 ms after stimulus onset.

          Results

          ERPs to infrequent modified images were found to differ in amplitude from those to frequent unmodified images at the midline electrodes (Fz, Pz, Cz and Oz) at the latency of 60-100 ms even when subjects were unaware of changes (change blindness).

          Conclusions

          The results suggest that the brain registers changes very rapidly, and that changed features in images are neurally represented even without participants' ability to report them.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Significance testing of difference potentials.

          This note provides a statistical-graphical method for the evaluation of the statistical significance of difference potentials from a group of subjects, and for the comparison of difference potentials between two groups. A table of the lengths of statistically significant intervals for various sampling interval lengths, numbers of subjects, and autocorrelation parameters is presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Change blindness.

            Although at any instant we experience a rich, detailed visual world, we do not use such visual details to form a stable representation across views. Over the past five years, researchers have focused increasingly on 'change blindness' (the inability to detect changes to an object or scene) as a means to examine the nature of our representations. Experiments using a diverse range of methods and displays have produced strikingly similar results: unless a change to a visual scene produces a localizable change or transient at a specific position on the retina, generally, people will not detect it. We review theory and research motivating work on change blindness and discuss recent evidence that people are blind to changes occurring in photographs, in motion pictures and even in real-world interactions. These findings suggest that relatively little visual information is preserved from one view to the next, and question a fundamental assumption that has underlain perception research for centuries: namely, that we need to store a detailed visual representation in the mind/brain from one view to the next.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A sensorimotor account of vision and visual consciousness.

              Many current neurophysiological, psychophysical, and psychological approaches to vision rest on the idea that when we see, the brain produces an internal representation of the world. The activation of this internal representation is assumed to give rise to the experience of seeing. The problem with this kind of approach is that it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness. An alternative proposal is made here. We propose that seeing is a way of acting. It is a particular way of exploring the environment. Activity in internal representations does not generate the experience of seeing. The outside world serves as its own, external, representation. The experience of seeing occurs when the organism masters what we call the governing laws of sensorimotor contingency. The advantage of this approach is that it provides a natural and principled way of accounting for visual consciousness, and for the differences in the perceived quality of sensory experience in the different sensory modalities. Several lines of empirical evidence are brought forward in support of the theory, in particular: evidence from experiments in sensorimotor adaptation, visual "filling in," visual stability despite eye movements, change blindness, sensory substitution, and color perception.
                Bookmark

                Author and article information

                Journal
                Behav Brain Funct
                Behavioral and Brain Functions : BBF
                BioMed Central
                1744-9081
                2010
                9 February 2010
                : 6
                : 12
                Affiliations
                [1 ]Department of Psychology, PO Box 35, FI-40014 University of Jyväskylä, Jyväskylä, Finland
                Article
                1744-9081-6-12
                10.1186/1744-9081-6-12
                2829480
                20181126
                9f983d9c-1cff-4f93-917f-59665aa6851e
                Copyright ©2010 Lyyra et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 September 2009
                : 9 February 2010
                Categories
                Research

                Neurology
                Neurology

                Comments

                Comment on this article