1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Anti-elastase and anti-hyaluronidase activities of saponins and sapogenins from Hedera helix, Aesculus hippocastanum, and Ruscus aculeatus: factors contributing to their efficacy in the treatment of venous insufficiency.

      Archiv Der Pharmazie
      Animals, Hyaluronoglucosaminidase, antagonists & inhibitors, Kinetics, Pancreatic Elastase, Plants, Medicinal, chemistry, Sapogenins, pharmacology, Saponins, Swine, Venous Insufficiency, drug therapy, physiopathology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Triterpene and steroid saponins and sapogenins of medicinal plants (Aesculus hippocastanum L., Hedera helix L., Ruscus aculeatus L.) are claimed to be effective for the treatment/prevention of venous insufficiency. In this work we evaluated the inhibitory effects of these plant constituents on the activity of elastase and hyaluronidase, the enzyme systems involved in the turnover of the main components of the perivascular amorphous substance. The results evidence that for Hedera helix L., the sapogenins only non-competitively inhibit hyaluronidase activity in a dose-dependent fashion, showing comparable IC50 values (hederagenin IC50 = 280.4 microM; oleanolic acid IC50 = 300.2 microM); both the saponins hederacoside C and alpha-hederin are very weak inhibitors. The same behaviour is observed for serine protease porcine pancreatic elastase: the glycosides are devoid of inhibitory action, while genins are potent competitive inhibitors (oleanolic acid IC50 = 5.1 microM; hederagenin IC50 = 40.6 microM). Constituents from Aesculus hippocastanum L. show inhibitory effects only on hyaluronidase, and this activity is mainly linked to the saponin escin (IC50 = 149.9 microM), less to its genin escinol (IC50 = 1.65 mM). By contrast, ruscogenins from Ruscus aculeatus L., ineffective on hyaluronidase activity, exhibit remarkable anti-elastase activity (IC50 = 119.9 microM; competitive inhibition). The mechanism of elastase inhibition by triterpene and steroid aglycones, with a nitroanilide derivative as substrate, is discussed.

          Related collections

          Author and article information

          Comments

          Comment on this article