27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Understanding the Biology of Antigen Cross-Presentation for the Design of Vaccines Against Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antigen cross-presentation, the process in which exogenous antigens are presented on MHC class I molecules, is crucial for the generation of effector CD8 + T cell responses. Although multiple cell types are being described to be able to cross-present antigens, in vivo this task is mainly carried out by certain subsets of dendritic cells (DCs). Aspects such as the internalization route, the pathway of endocytic trafficking, and the simultaneous activation through pattern-recognition receptors have a determining influence in how antigens are handled for cross-presentation by DCs. In this review, we will summarize new insights in factors that affect antigen cross-presentation of human DC subsets, and we will discuss the possibilities to exploit antigen cross-presentation for immunotherapy against cancer.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells

          In recent years, human dendritic cells (DCs) could be subdivided into CD304+ plasmacytoid DCs (pDCs) and conventional DCs (cDCs), the latter encompassing the CD1c+, CD16+, and CD141+ DC subsets. To date, the low frequency of these DCs in human blood has essentially prevented functional studies defining their specific contribution to antigen presentation. We have established a protocol for an effective isolation of pDC and cDC subsets to high purity. Using this approach, we show that CD141+ DCs are the only cells in human blood that express the chemokine receptor XCR1 and respond to the specific ligand XCL1 by Ca2+ mobilization and potent chemotaxis. More importantly, we demonstrate that CD141+ DCs excel in cross-presentation of soluble or cell-associated antigen to CD8+ T cells when directly compared with CD1c+ DCs, CD16+ DCs, and pDCs from the same donors. Both in their functional XCR1 expression and their effective processing and presentation of exogenous antigen in the context of major histocompatibility complex class I, human CD141+ DCs correspond to mouse CD8+ DCs, a subset known for superior antigen cross-presentation in vivo. These data define CD141+ DCs as professional antigen cross-presenting DCs in the human.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells

            In mouse, a subset of dendritic cells (DCs) known as CD8α+ DCs has emerged as an important player in the regulation of T cell responses and a promising target in vaccination strategies. However, translation into clinical protocols has been hampered by the failure to identify CD8α+ DCs in humans. Here, we characterize a population of human DCs that expresses DNGR-1 (CLEC9A) and high levels of BDCA3 and resembles mouse CD8α+ DCs in phenotype and function. We describe the presence of such cells in the spleens of humans and humanized mice and report on a protocol to generate them in vitro. Like mouse CD8α+ DCs, human DNGR-1+ BDCA3hi DCs express Necl2, CD207, BATF3, IRF8, and TLR3, but not CD11b, IRF4, TLR7, or (unlike CD8α+ DCs) TLR9. DNGR-1+ BDCA3hi DCs respond to poly I:C and agonists of TLR8, but not of TLR7, and produce interleukin (IL)-12 when given innate and T cell–derived signals. Notably, DNGR-1+ BDCA3+ DCs from in vitro cultures efficiently internalize material from dead cells and can cross-present exogenous antigens to CD8+ T cells upon treatment with poly I:C. The characterization of human DNGR-1+ BDCA3hi DCs and the ability to grow them in vitro opens the door for exploiting this subset in immunotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of a dendritic cell receptor that couples sensing of necrosis to immunity

              Injury or impaired clearance of apoptotic cells leads to the pathological accumulation of necrotic corpses, which induce an inflammatory response that initiates tissue repair1. In addition, antigens present within necrotic cells can sometimes provoke a specific immune response2-4 and it has been argued that necrosis could explain adaptive immunity in seemingly infection-free situations, such as after allograft transplantation or in spontaneous and therapy-induced tumour rejection5, 6. In the mouse, the CD8α+ subset of dendritic cells (DC) phagocytoses dead cell remnants and crossprimes CD8+ T cells against cell-associated antigens7. Here, we show that CD8α+ DC utilise CLEC9A (DNGR-1), a recently-characterised C-type lectin8-10, to recognise a preformed signal that is exposed on necrotic cells. Loss or blockade of CLEC9A does not impair uptake of necrotic cell material by CD8α+ DC but specifically reduces crosspresentation of dead cell-associated antigens in vitro and decreases the immunogenicity of necrotic cells in vivo. The function of CLEC9A requires a key tyrosine residue within its intracellular tail that allows recruitment and activation of the tyrosine kinase Syk, which is also essential for crosspresentation of dead cell-associated antigens. Thus, CLEC9A functions as a Syk-coupled C-type lectin receptor to mediate sensing of necrosis by the principal DC subset involved in regulating crosspriming to cell-associated antigens.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/95119
                URI : http://frontiersin.org/people/u/98258
                URI : http://frontiersin.org/people/u/68238
                URI : http://frontiersin.org/people/u/46631
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                08 April 2014
                2014
                : 5
                : 149
                Affiliations
                [1] 1Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam, Netherlands
                Author notes

                Edited by: Marianne Boes, University Medical Centre Utrecht, Netherlands

                Reviewed by: Sven Burgdorf, Rheinische Friedrich-Wilhelms-University, Germany; Richard A. Kroczek, Robert Koch-Institute, Germany

                *Correspondence: Yvette van Kooyk, Department of Molecular Cell Biology and Immunology, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, Netherlands e-mail: y.vankooyk@ 123456vumc.nl

                This article was submitted to Antigen Presenting Cell Biology, a section of the journal Frontiers in Immunology.

                Article
                10.3389/fimmu.2014.00149
                3986565
                24782858
                9faee78e-dd88-4c1d-81f3-defcf4ec6124
                Copyright © 2014 Fehres, Unger, Garcia-Vallejo and van Kooyk.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 January 2014
                : 21 March 2014
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 94, Pages: 10, Words: 8831
                Categories
                Immunology
                Review Article

                Immunology
                cross-presentation,dendritic cells,antigen processing and presentation,anti-cancer vaccine,cd8+ t cells

                Comments

                Comment on this article