168
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gravitational-wave cosmology across 29 decades in frequency

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantum fluctuations of the gravitational field in the early Universe, amplified by inflation, produce a primordial gravitational-wave background across a broad frequency band. We derive constraints on the spectrum of this gravitational radiation, and hence on theories of the early Universe, by combining experiments that cover 29 orders of magnitude in frequency. These include Planck observations of cosmic microwave background temperature and polarization power spectra and lensing, together with baryon acoustic oscillations and big bang nucleosynthesis measurements, as well as new pulsar timing array and ground-based interferometer limits. While individual experiments constrain the gravitational-wave energy density in specific frequency bands, the combination of experiments allows us to constrain cosmological parameters, including the inflationary spectral index, \(n_t\), and the tensor-to-scalar ratio, \(r\). Results from individual experiments include the most stringent nanohertz limit of the primordial background to date from the Parkes Pulsar Timing Array, \(\Omega_{\rm gw}(f)<2.3\times10^{-10}\). Observations of the cosmic microwave background alone limit the gravitational-wave spectral index at 95\% confidence to \(n_t\lesssim5\) for a tensor-to-scalar ratio of \(r = 0.11\). However, the combination of all the above experiments limits \(n_t<0.36\). Future Advanced LIGO observations are expected to further constrain \(n_t<0.34\) by 2020. When cosmic microwave background experiments detect a non-zero \(r\), our results will imply even more stringent constraints on \(n_t\) and hence theories of the early Universe.

          Related collections

          Author and article information

          Journal
          2015-11-18
          2016-02-28
          Article
          10.1103/PhysRevX.6.011035
          1511.05994
          3ee6598c-00f5-4178-9fd7-752b90056fbf

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Phys. Rev. X 6, 011035 (2016)
          accepted for publication in Physical Review X
          astro-ph.CO gr-qc

          Cosmology & Extragalactic astrophysics,General relativity & Quantum cosmology

          Comments

          Comment on this article