23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Differences Between Rice and Wheat in Temperature Responses of Photosynthesis and Plant Growth

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The temperature responses of photosynthesis ( A) and growth were examined in rice and wheat grown hydroponically under day/night temperature regimes of 13/10, 19/16, 25/19, 30/24 and 37/31°C. Irrespective of growth temperature, the maximal rates of A were found to be at 30–35°C in rice and at 25–30°C in wheat. Below 25°C the rates were higher in wheat, while above 30°C they were higher in rice. However, in both species, A measured at the growth temperature remained almost constant irrespective of temperature. Biomass production and relative growth rate (RGR) were greatest in rice grown at 30/24°C and in wheat grown at 25/19°C. Although there was no difference between the species in the optimal temperature of the leaf area ratios (LARs), the net assimilation rate (NAR) in rice decreased at low temperature (19/16°C) while the NAR in wheat decreased at high temperature (37/31°C). For both species, the N-use efficiency (NUE) for growth rate (GR), estimated by dividing the NAR by leaf-N content, correlated with GR and with biomass production. Similarly, when NUE for A at growth temperature was estimated, the temperature response of NUE for A was similar to that of NUE for GR in both species. The results suggest that the difference between rice and wheat in the temperature response of biomass production depends on the difference in temperature dependence of NUE for A.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.

          A series of experiments is presented investigating short term and long term changes of the nature of the response of rate of CO2 assimilation to intercellular p(CO2). The relationships between CO2 assimilation rate and biochemical components of leaf photosynthesis, such as ribulose-bisphosphate (RuP2) carboxylase-oxygenase activity and electron transport capacity are examined and related to current theory of CO2 assimilation in leaves of C3 species. It was found that the response of the rate of CO2 assimilation to irradiance, partial pressure of O2, p(O2), and temperature was different at low and high intercellular p(CO2), suggesting that CO2 assimilation rate is governed by different processes at low and high intercellular p(CO2). In longer term changes in CO2 assimilation rate, induced by different growth conditions, the initial slope of the response of CO2 assimilation rate to intercellular p(CO2) could be correlated to in vitro measurements of RuP2 carboxylase activity. Also, CO2 assimilation rate at high p(CO2) could be correlated to in vitro measurements of electron transport rate. These results are consistent with the hypothesis that CO2 assimilation rate is limited by the RuP2 saturated rate of the RuP2 carboxylase-oxygenase at low intercellular p(CO2) and by the rate allowed by RuP2 regeneration capacity at high intercellular p(CO2).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Photosynthetic Response and Adaptation to Temperature in Higher Plants

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rice yields decline with higher night temperature from global warming.

              The impact of projected global warming on crop yields has been evaluated by indirect methods using simulation models. Direct studies on the effects of observed climate change on crop growth and yield could provide more accurate information for assessing the impact of climate change on crop production. We analyzed weather data at the International Rice Research Institute Farm from 1979 to 2003 to examine temperature trends and the relationship between rice yield and temperature by using data from irrigated field experiments conducted at the International Rice Research Institute Farm from 1992 to 2003. Here we report that annual mean maximum and minimum temperatures have increased by 0.35 degrees C and 1.13 degrees C, respectively, for the period 1979-2003 and a close linkage between rice grain yield and mean minimum temperature during the dry cropping season (January to April). Grain yield declined by 10% for each 1 degrees C increase in growing-season minimum temperature in the dry season, whereas the effect of maximum temperature on crop yield was insignificant. This report provides a direct evidence of decreased rice yields from increased nighttime temperature associated with global warming.
                Bookmark

                Author and article information

                Journal
                Plant Cell Physiol
                pcp
                pcellphys
                Plant and Cell Physiology
                Oxford University Press
                0032-0781
                1471-9053
                April 2009
                27 February 2009
                27 February 2009
                : 50
                : 4 , Special Issue Articles: Photosynthesis
                : 744-755
                Affiliations
                Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
                Author notes
                *Corresponding author: E-mail, makino@ 123456biochem.tohoku.ac.jp ; Fax, +81-22-717-8765.
                Article
                pcp029
                10.1093/pcp/pcp029
                2669889
                19251744
                9fcbcb0a-1d03-4e89-894d-30be9a6980c4
                © The Author 2009. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved.

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and the Japanese Society of Plant Physiologists are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org

                History
                : 6 January 2009
                : 17 February 2009
                Categories
                Special Issue – Regular Papers

                Plant science & Botany
                temperature,photosynthesis,n-use efficiency,triticum aestivum l,oryza sativa l,biomass production

                Comments

                Comment on this article