13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Therapies for Inherited Retinal Diseases—Current Standing, Opportunities and Challenges

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inherited retinal diseases (IRDs) are both genetically and clinically highly heterogeneous and have long been considered incurable. Following the successful development of a gene augmentation therapy for biallelic RPE65-associated IRD, this view has changed. As a result, many different therapeutic approaches are currently being developed, in particular a large variety of molecular therapies. These are depending on the severity of the retinal degeneration, knowledge of the pathophysiological mechanism underlying each subtype of IRD, and the therapeutic target molecule. DNA therapies include approaches such as gene augmentation therapy, genome editing and optogenetics. For some genetic subtypes of IRD, RNA therapies and compound therapies have also shown considerable therapeutic potential. In this review, we summarize the current state-of-the-art of various therapeutic approaches, including the pros and cons of each strategy, and outline the future challenges that lie ahead in the combat against IRDs.

          Related collections

          Most cited references166

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient Delivery of Genome-Editing Proteins In Vitro and In Vivo

          Efficient intracellular delivery of proteins is needed to fully realize the potential of protein therapeutics. Current methods of protein delivery commonly suffer from low tolerance for serum, poor endosomal escape, and limited in vivo efficacy. Here we report that common cationic lipid nucleic acid transfection reagents can potently deliver proteins that are fused to negatively supercharged proteins, that contain natural anionic domains, or that natively bind to anionic nucleic acids. This approach mediates the potent delivery of nM concentrations of Cre recombinase, TALE- and Cas9-based transcriptional activators, and Cas9:sgRNA nuclease complexes into cultured human cells in media containing 10% serum. Delivery of Cas9:sgRNA complexes resulted in up to 80% genome modification with substantially higher specificity compared to DNA transfection. This approach also mediated efficient delivery of Cre recombinase and Cas9:sgRNA complexes into the mouse inner ear in vivo, achieving 90% Cre-mediated recombination and 20% Cas9-mediated genome modification in hair cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5.

            A complementary DNA clone has been isolated that encodes a coxsackievirus and adenovirus receptor (CAR). When transfected with CAR complementary DNA, nonpermissive hamster cells became susceptible to coxsackie B virus attachment and infection. Furthermore, consistent with previous studies demonstrating that adenovirus infection depends on attachment of a viral fiber to the target cell, CAR-transfected hamster cells bound adenovirus in a fiber-dependent fashion and showed a 100-fold increase in susceptibility to virus-mediated gene transfer. Identification of CAR as a receptor for these two unrelated and structurally distinct viral pathogens is important for understanding viral pathogenesis and has implications for therapeutic gene delivery with adenovirus vectors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies

              The Lancet, 385(9967), 509-516
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                28 August 2019
                September 2019
                : 10
                : 9
                : 654
                Affiliations
                Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
                Author notes
                [* ]Correspondence: alex.garanto@ 123456radboudumc.nl (A.G.); rob.collin@ 123456radboudumc.nl (R.W.J.C.); Tel.: +31-24-36-14107 (A.G.); +31-24-36-13750 (R.W.J.C.)
                [†]

                Both senior authors contributed equally.

                Author information
                https://orcid.org/0000-0001-9753-521X
                https://orcid.org/0000-0003-4347-6503
                Article
                genes-10-00654
                10.3390/genes10090654
                6770110
                31466352
                9fefebcd-9b77-415e-8bb8-282579c1aae3
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 July 2019
                : 26 August 2019
                Categories
                Review

                inherited retinal diseases,ird,dna therapies,rna therapies,compound therapies,clinical trials

                Comments

                Comment on this article