57
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pandemic preparedness: On the efficacy of non‐pharmaceutical interventions in COVID‐19 and about approaches to predict future pandemic viruses

      other
      1 ,
      Microbial Biotechnology
      John Wiley and Sons Inc.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With three major viral pandemics over the last 100 years, namely the Spanish flu, AIDS and COVID‐19 each claiming many millions of lives, pandemic preparedness has become an important issue for public health. The economic, social and political consequences of the upheaval caused by such pandemics also represent a major challenge for governments with respect to sustainable development goals. The field of pandemic preparedness is vast and the current article can only address selected aspects. The article looks first backwards and addresses the question of the efficacy of non‐pharmaceutical interventions (NPI) on the trajectory of the COVID‐19 pandemic. The article looks then forward by asking to what extent viral candidates for future pandemics can be predicted by virome analyses from metagenome and transcriptome sequencing, by focusing on the virome from specific animal species and using ecological and epidemiological data about spillover viral infections in veterinary and human medicine. As a comprehensive overview on pandemic preparedness is beyond the capacity of a single reviewer, only selected topics will be discussed using recent key scientific publications. Since COVID‐19 has not run its course, a computational program able to predict the future evolution of SARS‐CoV‐2 is mentioned that could assist proactive mRNA vaccine developments against possible future variants of concern. Ending the COVID‐19 epidemic necessitates mucosal vaccines that can suppress the transmission of SARS‐CoV‐2 and therefore this article closes by discussing a promising and versatile protein nanoparticle experimental vaccine approach for inhalation that does not depend on needles nor a cold chain for distribution.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe

          Following the detection of the new coronavirus1 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics of coronavirus disease 2019 (COVID-19). In response, many European countries have implemented non-pharmaceutical interventions, such as the closure of schools and national lockdowns. Here we study the effect of major interventions across 11 European countries for the period from the start of the COVID-19 epidemics in February 2020 until 4 May 2020, when lockdowns started to be lifted. Our model calculates backwards from observed deaths to estimate transmission that occurred several weeks previously, allowing for the time lag between infection and death. We use partial pooling of information between countries, with both individual and shared effects on the time-varying reproduction number (Rt). Pooling allows for more information to be used, helps to overcome idiosyncrasies in the data and enables more-timely estimates. Our model relies on fixed estimates of some epidemiological parameters (such as the infection fatality rate), does not include importation or subnational variation and assumes that changes in Rt are an immediate response to interventions rather than gradual changes in behaviour. Amidst the ongoing pandemic, we rely on death data that are incomplete, show systematic biases in reporting and are subject to future consolidation. We estimate that-for all of the countries we consider here-current interventions have been sufficient to drive Rt below 1 (probability Rt < 1.0 is greater than 99%) and achieve control of the epidemic. We estimate that across all 11 countries combined, between 12 and 15 million individuals were infected with SARS-CoV-2 up to 4 May 2020, representing between 3.2% and 4.0% of the population. Our results show that major non-pharmaceutical interventions-and lockdowns in particular-have had a large effect on reducing transmission. Continued intervention should be considered to keep transmission of SARS-CoV-2 under control.
            • Record: found
            • Abstract: found
            • Article: found

            School closure and management practices during coronavirus outbreaks including COVID-19: a rapid systematic review

            Summary In response to the coronavirus disease 2019 (COVID-19) pandemic, 107 countries had implemented national school closures by March 18, 2020. It is unknown whether school measures are effective in coronavirus outbreaks (eg, due to severe acute respiratory syndrome [SARS], Middle East respiratory syndrome, or COVID-19). We undertook a systematic review by searching three electronic databases to identify what is known about the effectiveness of school closures and other school social distancing practices during coronavirus outbreaks. We included 16 of 616 identified articles. School closures were deployed rapidly across mainland China and Hong Kong for COVID-19. However, there are no data on the relative contribution of school closures to transmission control. Data from the SARS outbreak in mainland China, Hong Kong, and Singapore suggest that school closures did not contribute to the control of the epidemic. Modelling studies of SARS produced conflicting results. Recent modelling studies of COVID-19 predict that school closures alone would prevent only 2–4% of deaths, much less than other social distancing interventions. Policy makers need to be aware of the equivocal evidence when considering school closures for COVID-19, and that combinations of social distancing measures should be considered. Other less disruptive social distancing interventions in schools require further consideration if restrictive social distancing policies are implemented for long periods.
              • Record: found
              • Abstract: found
              • Article: not found

              Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study

              Summary Background A range of public health measures have been implemented to suppress local transmission of coronavirus disease 2019 (COVID-19) in Hong Kong. We examined the effect of these interventions and behavioural changes of the public on the incidence of COVID-19, as well as on influenza virus infections, which might share some aspects of transmission dynamics with COVID-19. Methods We analysed data on laboratory-confirmed COVID-19 cases, influenza surveillance data in outpatients of all ages, and influenza hospitalisations in children. We estimated the daily effective reproduction number (R t) for COVID-19 and influenza A H1N1 to estimate changes in transmissibility over time. Attitudes towards COVID-19 and changes in population behaviours were reviewed through three telephone surveys done on Jan 20–23, Feb 11–14, and March 10–13, 2020. Findings COVID-19 transmissibility measured by R t has remained at approximately 1 for 8 weeks in Hong Kong. Influenza transmission declined substantially after the implementation of social distancing measures and changes in population behaviours in late January, with a 44% (95% CI 34–53%) reduction in transmissibility in the community, from an estimated R t of 1·28 (95% CI 1·26–1·30) before the start of the school closures to 0·72 (0·70–0·74) during the closure weeks. Similarly, a 33% (24–43%) reduction in transmissibility was seen based on paediatric hospitalisation rates, from an R t of 1·10 (1·06–1·12) before the start of the school closures to 0·73 (0·68–0·77) after school closures. Among respondents to the surveys, 74·5%, 97·5%, and 98·8% reported wearing masks when going out, and 61·3%, 90·2%, and 85·1% reported avoiding crowded places in surveys 1 (n=1008), 2 (n=1000), and 3 (n=1005), respectively. Interpretation Our study shows that non-pharmaceutical interventions (including border restrictions, quarantine and isolation, distancing, and changes in population behaviour) were associated with reduced transmission of COVID-19 in Hong Kong, and are also likely to have substantially reduced influenza transmission in early February, 2020. Funding Health and Medical Research Fund, Hong Kong.

                Author and article information

                Contributors
                haraldbruessow@yahoo.com
                Journal
                Microb Biotechnol
                Microb Biotechnol
                10.1111/(ISSN)1751-7915
                MBT2
                Microbial Biotechnology
                John Wiley and Sons Inc. (Hoboken )
                1751-7915
                11 March 2024
                March 2024
                : 17
                : 3 ( doiID: 10.1111/mbt2.v17.3 )
                : e14431
                Affiliations
                [ 1 ] Laboratory of Gene Technology, Department of Biosystems KU Leuven Leuven Belgium
                Author notes
                [*] [* ] Correspondence

                Harald Brüssow, Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium.

                Email: haraldbruessow@ 123456yahoo.com

                Author information
                https://orcid.org/0000-0003-4783-8583
                Article
                MBT214431 MICROBIO-2024-068
                10.1111/1751-7915.14431
                10926049
                38465466
                9ff73bda-bbfb-413c-9029-bcc9581b4fad
                © 2024 The Authors. Microbial Biotechnology published by Applied Microbiology International and John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 03 February 2024
                : 15 February 2024
                Page count
                Figures: 0, Tables: 0, Pages: 16, Words: 13474
                Categories
                Lilliput
                Lilliput
                Custom metadata
                2.0
                March 2024
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.3.9 mode:remove_FC converted:11.03.2024

                Biotechnology
                Biotechnology

                Comments

                Comment on this article

                Related Documents Log