10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The role of poly(ADP-ribose) polymerase-1 in CNS disease.

      Neuroscience
      Animals, Cell Death, genetics, Cell Survival, Central Nervous System Diseases, enzymology, physiopathology, DNA Damage, DNA Repair, Encephalitis, metabolism, Humans, Nerve Degeneration, Oxidative Stress, Poly(ADP-ribose) Polymerases

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that contributes to both neuronal death and survival under stress conditions. PARP-1 is the most abundant of several PARP family members, accounting for more than 85% of nuclear PARP activity, and is present in all nucleated cells of multicellular animals. When activated by DNA damage, PARP-1 consumes nicotinamide adenine dinucleotide (NAD+) to form branched polymers of ADP-ribose on target proteins. This process can have at least three important consequences in the CNS, depending on the cell type and the extent of DNA damage: 1) Poly(ADP-ribose) formation on histones and on enzymes involved in DNA repair can prevent sister chromatid exchange and facilitate base-excision repair; 2) poly(ADP-ribose) formation can influence the action of transcription factors, notably nuclear factor kappaB, and thereby promote inflammation; and 3) extensive PARP-1 activation can promote neuronal death through mechanisms involving NAD+ depletion and release of apoptosis inducing factor from the mitochondria. PARP-1 activation is thereby a key mediator of neuronal death during excitotoxicity, ischemia, and oxidative stress, and PARP-1 gene deletion or pharmacological inhibition can markedly improve neuronal survival in these settings. PARP-1 activation has also been identified in Alzheimer's disease and in experimental allergic encephalitis, but the role of PARP-1 in these disorders remains to be established.

          Related collections

          Author and article information

          Comments

          Comment on this article