34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ebi/AP-1 Suppresses Pro-Apoptotic Genes Expression and Permits Long-Term Survival of Drosophila Sensory Neurons

      research-article
      1 , 2 , 3 , 1 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1) is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box–like and WD40 repeats–containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1) and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Expression of baculovirus P35 prevents cell death in Drosophila.

          The baculovirus P35 protein functions to prevent apoptotic death of infected cells. We have expressed P35 in the developing embryo and eye of the fly Drosophila melanogaster. P35 eliminates most, if not all, normally occurring cell death in these tissues, as well as X-irradiation-induced death. Excess pupal eye cells that are normally eliminated by apoptosis develop into pigment cells when their death is prevented by P35 expression. Our results suggest that one mechanism by which viruses prevent the death of the host cell is to block a cell death pathway that mediates normally occurring cell death. Identification of molecules that interact biochemically or genetically with P35 in Drosophila should provide important insights into how cell death is regulated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways.

            We demonstrate the efficacy of double-stranded RNA-mediated interference (RNAi) of gene expression in generating "knock-out" phenotypes for specific proteins in several Drosophila cell lines. We prove the applicability of this technique for studying signaling cascades by dissecting the well-characterized insulin signal transduction pathway. Specifically, we demonstrate that inhibiting the expression of the DSOR1 (mitogen-activated protein kinase kinase, MAPKK) prevents the activation of the downstream ERK-A (MAPK). In contrast, blocking ERK-A expression results in increased activation of DSOR1. We also show that Drosophila AKT (DAKT) activation depends on the insulin receptor substrate, CHICO (IRS1-4). Finally, we demonstrate that blocking the expression of Drosophila PTEN results in the activation of DAKT. In all cases, the interference of the biochemical cascade by RNAi is consistent with the known steps in the pathway. We extend this powerful technique to study two proteins, DSH3PX1 and Drosophila ACK (DACK). DSH3PX1 is an SH3, phox homology domain-containing protein, and DACK is homologous to the mammalian activated Cdc42 tyrosine kinase, ACK. Using RNAi, we demonstrate that DACK is upstream of DSH3PX1 phosphorylation, making DSH3PX1 an identified downstream target/substrate of ACK-like tyrosine kinases. These experiments highlight the usefulness of RNAi in dissecting complex biochemical signaling cascades and provide a highly effective method for determining the function of the identified genes arising from the Drosophila genome sequencing project.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration.

              Human retinal dystrophies and degenerations and light-induced retinal degenerations in animal models are sharing an important feature: visual cell death by apoptosis. Studying apoptosis may thus provide an important handle to understand mechanisms of cell death and to develop potential rescue strategies for blinding retinal diseases. Apoptosis is the regulated elimination of individual cells and constitutes an almost universal principle in developmental histogenesis and organogenesis and in the maintenance of tissue homeostasis in mature organs. Here we present an overview on molecular and cellular mechanisms of apoptosis and summarize recent developments. The classical concept of apoptosis being initiated and executed by endopeptidases that cleave proteins at aspartate residues (Caspases) can no longer be held in its strict sense. There is an increasing number of caspase-independent pathways, involving apoptosis inducing factor, endonuclease G, poly-(ADP-ribose) polymerase-1, proteasomes, lysosomes and others. Similarly, a considerable number and diversity of pro-apoptotic stimuli is being explored. We focus on apoptosis pathways in our model: light-damage induced by short exposures to bright white light and highlight those essential conditions known so far in the apoptotic death cascade. In our model, the visual pigment rhodopsin is the essential mediator of the initial death signal. The rate of rhodopsin regeneration defines damage threshold in different strains of mice. This rate depends on the level of the pigment epithelial protein RPE65, which in turn depends on the amino acid (leucine or methionine) encoded at position 450. Activation of the pro-apoptotic transcription factor AP-1 constitutes an essential death signal. Inhibition of rhodopsin regeneration as well as suppression of AP-1 confers complete protection in our system. Furthermore, we describe observations in other light-damage systems as well as characteristics of animal models for RP with particular emphasis on rescue strategies. There is a vast array of different neuroprotective cytokines that are applied in light-damage and RP animal models and show diverging efficacy. Some cytokines protect against light damage as well as against RP in animal models. At present, the mechanisms of neuroprotective/anti-apoptotic action represent a "black box" which needs to be explored. Even though acute light damage and RP animal models show different characteristics in many respects, we hope to gain insights into apoptotic mechanisms for both conditions by studying light damage and comparing results with those obtained in animal models. In our view, future directions may include the investigation of different apoptotic pathways in light damage (and inherited animal models). Emphasis should also be placed on mechanisms of removal of dead cells in apoptosis, which appears to be more important than initially recognized. In this context, a stimulating concept concerns age-related macular degeneration, where an insufficiency of macrophages removing debris that results from cell death and photoreceptor turnover might be an important pathogenetic event. In acute light damage, the appearance of macrophages as well as phagocytosis by the retinal pigment epithelium are a consistent and conspicuous feature, which lends itself to the study of removal of cellular debris in apoptosis. We are aware of the many excellent reviews and the earlier work paving the way to our current knowledge and understanding of retinal degeneration, photoreceptor apoptosis and neuroprotection. However, we limited this review mainly to work published in the last 7-8 years and we apologize to all the researchers which have contributed to the field but are not cited here.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                30 May 2012
                : 7
                : 5
                : e37028
                Affiliations
                [1 ]Animal Models of Aging, National Center for Geriatrics and Gerontology, Gengo, Obu, Aichi, Japan
                [2 ]Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
                [3 ]Department of Biology, Kobe University Graduate School of Science, Kobe, Hyogo, Japan
                University of Massachusetts Medical School, United States of America
                Author notes

                Conceived and designed the experiments: LT YL. Performed the experiments: LT YL. Analyzed the data: LT YL SH. Contributed reagents/materials/analysis tools: LT YL SH. Wrote the paper: LT YL SH.

                Article
                PONE-D-12-02060
                10.1371/journal.pone.0037028
                3364243
                22666340
                a0004449-472f-45b3-804d-df2b85658aa4
                Lim et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 20 January 2012
                : 11 April 2012
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Neurological System
                Sensory Physiology
                Developmental Biology
                Organism Development
                Aging
                Model Organisms
                Animal Models
                Drosophila Melanogaster
                Molecular Cell Biology
                Signal Transduction
                Signaling Cascades
                Apoptotic Signaling Cascade
                Signaling in Cellular Processes
                Apoptotic Signaling
                Neuroscience
                Neurobiology of Disease and Regeneration
                Medicine
                Neurology
                Neurodegenerative Diseases

                Uncategorized
                Uncategorized

                Comments

                Comment on this article