+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrating mHealth at point of care in low- and middle-income settings: the system perspective

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          While the field represents a wide spectrum of products and services, many aspects of mHealth have great promise within resource-poor settings: there is an extensive range of cheap, widely available tools which can be used at the point of care delivery. However, there are a number of conditions which need to be met if such solutions are to be adequately integrated into existing health systems; we consider these from regulatory, technological and user perspectives. We explore the need for an appropriate legislative and regulatory framework, to avoid ‘work around’ solutions, which threaten patient confidentiality (such as the extensive use of instant messaging services to deliver sensitive clinical information and seek diagnostic and management advice). In addition, we will look at other confidentiality issues such as the need for applications to remove identifiable information (such as photos) from users’ devices. Integration is dependent upon multiple technological factors, and we illustrate these using examples such as products made available specifically for adoption in low- and middle-income countries. Issues such as usability of the application, signal loss, data volume utilization, need to enter passwords, and the availability of automated or in-app context-relevant clinical advice will be discussed. From a user perspective, there are three groups to consider: experts, front-line clinicians, and patients. Each will accept, to different degrees, the use of technology in care – often with cultural or regional variation – and this is central to integration and uptake. For clinicians, ease of integration into daily work flow is critical, as are familiarity and acceptability of other technology in the workplace. Front-line staff tend to work in areas with more challenges around cell phone signal coverage and data availability than ‘back-end’ experts, and the effect of this is discussed.

          Related collections

          Most cited references 27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Assessing the Effect of mHealth Interventions in Improving Maternal and Neonatal Care in Low- and Middle-Income Countries: A Systematic Review

          Introduction Maternal and neonatal mortality remains high in many low- and middle-income countries (LMIC). Availability and use of mobile phones is increasing rapidly with 90% of persons in developing countries having a mobile-cellular subscription. Mobile health (mHealth) interventions have been proposed as effective solutions to improve maternal and neonatal health. This systematic review assessed the effect of mHealth interventions that support pregnant women during the antenatal, birth and postnatal period in LMIC. Methods The review was registered with Prospero (CRD42014010292). Six databases were searched from June 2014–April 2015, accompanied by grey literature search using pre-defined search terms linked to pregnant women in LMIC and mHealth. Quality of articles was assessed with an adapted Cochrane Risk of Bias Tool. Because of heterogeneity in outcomes, settings and study designs a narrative synthesis of quantitative results of intervention studies on maternal outcomes, neonatal outcomes, service utilization, and healthy pregnancy education was conducted. Qualitative and quantitative results were synthesized with a strengths, weaknesses, opportunities, and threats analysis. Results In total, 3777 articles were found, of which 27 studies were included: twelve intervention studies and fifteen descriptive studies. mHealth interventions targeted at pregnant women increased maternal and neonatal service utilization shown through increased antenatal care attendance, facility-service utilization, skilled attendance at birth, and vaccination rates. Few articles assessed the effect on maternal or neonatal health outcomes, with inconsistent results. Conclusion mHealth interventions may be effective solutions to improve maternal and neonatal service utilization. Further studies assessing mHealth’s impact on maternal and neonatal outcomes are recommended. The emerging trend of strong experimental research designs with randomized controlled trials, combined with feasibility research, government involvement and integration of mHealth interventions into the healthcare system is encouraging and can pave the way to improved decision making on best practice implementation of mHealth interventions.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Can the ubiquitous power of mobile phones be used to improve health outcomes in developing countries?

            Background The ongoing policy debate about the value of communications technology in promoting development objectives is diverse. Some view computer/web/phone communications technology as insufficient to solve development problems while others view communications technology as assisting all sections of the population. This paper looks at evidence to support or refute the idea that fixed and mobile telephones is, or could be, an effective healthcare intervention in developing countries. Methods A Web-based and library database search was undertaken including the following databases: MEDLINE, CINAHL, (nursing & allied health), Evidence Based Medicine (EBM), POPLINE, BIOSIS, and Web of Science, AIDSearch (MEDLINE AIDS/HIV Subset, AIDSTRIALS & AIDSDRUGS) databases. Results Evidence can be found to both support and refute the proposition that fixed and mobile telephones is, or could be, an effective healthcare intervention in developing countries. It is difficult to generalize because of the different outcome measurements and the small number of controlled studies. There is almost no literature on using mobile telephones as a healthcare intervention for HIV, TB, malaria, and chronic conditions in developing countries. Clinical outcomes are rarely measured. Convincing evidence regarding the overall cost-effectiveness of mobile phone " telemedicine" is still limited and good-quality studies are rare. Evidence of the cost effectiveness of such interventions to improve adherence to medicines is also quite weak. Conclusion The developed world model of personal ownership of a phone may not be appropriate to the developing world in which shared mobile telephone use is important. Sharing may be a serious drawback to use of mobile telephones as a healthcare intervention in terms of stigma and privacy, but its magnitude is unknown. One advantage, however, of telephones with respect to adherence to medicine in chronic care models is its ability to create a multi-way interaction between patient and provider(s) and thus facilitate the dynamic nature of this relationship. Regulatory reforms required for proper operation of basic and value-added telecommunications services are a priority if mobile telecommunications are to be used for healthcare initiatives.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Applying a framework for assessing the health system challenges to scaling up mHealth in South Africa

              Background Mobile phone technology has demonstrated the potential to improve health service delivery, but there is little guidance to inform decisions about acquiring and implementing mHealth technology at scale in health systems. Using the case of community-based health services (CBS) in South Africa, we apply a framework to appraise the opportunities and challenges to effective implementation of mHealth at scale in health systems. Methods A qualitative study reviewed the benefits and challenges of mHealth in community-based services in South Africa, through a combination of key informant interviews, site visits to local projects and document reviews. Using a framework adapted from three approaches to reviewing sustainable information and communication technology (ICT), the lessons from local experience and elsewhere formed the basis of a wider consideration of scale up challenges in South Africa. Results Four key system dimensions were identified and assessed: government stewardship and the organisational, technological and financial systems. In South Africa, the opportunities for successful implementation of mHealth include the high prevalence of mobile phones, a supportive policy environment for eHealth, successful use of mHealth for CBS in a number of projects and a well-developed ICT industry. However there are weaknesses in other key health systems areas such as organisational culture and capacity for using health information for management, and the poor availability and use of ICT in primary health care. The technological challenges include the complexity of ensuring interoperability and integration of information systems and securing privacy of information. Finally, there are the challenges of sustainable financing required for large scale use of mobile phone technology in resource limited settings. Conclusion Against a background of a health system with a weak ICT environment and limited implementation capacity, it remains uncertain that the potential benefits of mHealth for CBS would be retained with immediate large-scale implementation. Applying a health systems framework facilitated a systematic appraisal of potential challenges to scaling up mHealth for CBS in South Africa and may be useful for policy and practice decision-making in other low- and middle-income settings.

                Author and article information

                Glob Health Action
                Glob Health Action
                Global Health Action
                Taylor & Francis
                25 August 2017
                : 10
                : sup3 , mHealth for Improved Access and Equity in Health Care
                [ a ] Division of Emergency Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University , Bellville, South Africa
                [ b ] Division of Emergency Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
                [ c ] College of Medicine, University of Illinois at Chicago , Chicago, IL, USA
                [ d ] Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute , Seoul, South Korea
                Author notes
                CONTACT Lee Wallis leew@ 123456sun.ac.za Division of Emergency Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University , Private Bag X24, Bellville 7535, South Africa
                © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Page count
                Tables: 1, References: 43, Pages: 37
                Funded by: Research Council of Norway 10.13039/501100005416
                Award ID: 220873
                Funded by: South African Medical Research Council 10.13039/501100001322
                Current Debate


                Comment on this article