53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The pipeline system for Octave and Matlab (PSOM): a lightweight scripting framework and execution engine for scientific workflows

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The analysis of neuroimaging databases typically involves a large number of inter-connected steps called a pipeline. The pipeline system for Octave and Matlab (PSOM) is a flexible framework for the implementation of pipelines in the form of Octave or Matlab scripts. PSOM does not introduce new language constructs to specify the steps and structure of the workflow. All steps of analysis are instead described by a regular Matlab data structure, documenting their associated command and options, as well as their input, output, and cleaned-up files. The PSOM execution engine provides a number of automated services: (1) it executes jobs in parallel on a local computing facility as long as the dependencies between jobs allow for it and sufficient resources are available; (2) it generates a comprehensive record of the pipeline stages and the history of execution, which is detailed enough to fully reproduce the analysis; (3) if an analysis is started multiple times, it executes only the parts of the pipeline that need to be reprocessed. PSOM is distributed under an open-source MIT license and can be used without restriction for academic or commercial projects. The package has no external dependencies besides Matlab or Octave, is straightforward to install and supports of variety of operating systems (Linux, Windows, Mac). We ran several benchmark experiments on a public database including 200 subjects, using a pipeline for the preprocessing of functional magnetic resonance images (fMRI). The benchmark results showed that PSOM is a powerful solution for the analysis of large databases using local or distributed computing resources.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences

          Increased reliance on computational approaches in the life sciences has revealed grave concerns about how accessible and reproducible computation-reliant results truly are. Galaxy http://usegalaxy.org, an open web-based platform for genomic research, addresses these problems. Galaxy automatically tracks and manages data provenance and provides support for capturing the context and intent of computational methods. Galaxy Pages are interactive, web-based documents that provide users with a medium to communicate a complete computational analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python

            Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM) are used to process and analyze large and often diverse (highly multi-dimensional) data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient, and optimal use of neuroimaging analysis approaches: (1) No uniform access to neuroimaging analysis software and usage information; (2) No framework for comparative algorithm development and dissemination; (3) Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; (4) Neuroimaging software packages do not address computational efficiency; and (5) Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype), an open-source, community-developed, software package, and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is Berkeley Software Distribution licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for reproducible research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space.

              In both diagnostic and research applications, the interpretation of MR images of the human brain is facilitated when different data sets can be compared by visual inspection of equivalent anatomical planes. Quantitative analysis with predefined atlas templates often requires the initial alignment of atlas and image planes. Unfortunately, the axial planes acquired during separate scanning sessions are often different in their relative position and orientation, and these slices are not coplanar with those in the atlas. We have developed a completely automatic method to register a given volumetric data set with Talairach stereotaxic coordinate system. The registration method is based on multi-scale, three-dimensional (3D) cross-correlation with an average (n > 300) MR brain image volume aligned with the Talariach stereotaxic space. Once the data set is re-sampled by the transformation recovered by the algorithm, atlas slices can be directly superimposed on the corresponding slices of the re-sampled volume. the use of such a standardized space also allows the direct comparison, voxel to voxel, of two or more data sets brought into stereotaxic space. With use of a two-tailed Student t test for paired samples, there was no significant difference in the transformation parameters recovered by the automatic algorithm when compared with two manual landmark-based methods (p > 0.1 for all parameters except y-scale, where p > 0.05). Using root-mean-square difference between normalized voxel intensities as an unbiased measure of registration, we show that when estimated and averaged over 60 volumetric MR images in standard space, this measure was 30% lower for the automatic technique than the manual method, indicating better registrations. Likewise, the automatic method showed a 57% reduction in standard deviation, implying a more stable technique. The algorithm is able to recover the transformation even when data are missing from the top or bottom of the volume. We present a fully automatic registration method to map volumetric data into stereotaxic space that yields results comparable with those of manually based techniques. The method requires no manual identification of points or contours and therefore does not suffer the drawbacks involved in user intervention such as reproducibility and interobserver variability.
                Bookmark

                Author and article information

                Journal
                Front Neuroinform
                Front Neuroinform
                Front. Neuroinform.
                Frontiers in Neuroinformatics
                Frontiers Media S.A.
                1662-5196
                03 April 2012
                2012
                : 6
                : 7
                Affiliations
                [1] 1simpleCentre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal QC, Canada
                [2] 2simpleDépartement d'Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal QC, Canada
                [3] 3simpleMcConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal QC, Canada
                [4] 4simpleMouse Imaging Centre, The Hospital for Sick Children, Toronto ON, Canada
                [5] 5simpleDepartment of Medical Biophysics, University of Toronto, Toronto ON, Canada
                [6] 6simpleBiospective Incorporated, Montréal QC, Canada
                Author notes

                Edited by: Andrew P. Davison, Centre National de la Recherche Scientifique, France

                Reviewed by: Ivo Dinov, University of California, USA; Yann Cointepas, CEA - NeuroSpin, France

                *Correspondence: Pierre Bellec, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, 4545 chemin Queen-Mary, Montréal, QC H3W 1W5, Canada. e-mail: pierre.bellec@ 123456criugm.qc.ca
                Article
                10.3389/fninf.2012.00007
                3318188
                22493575
                a01535c4-90ac-4cf1-a20a-4fd36d67e3c4
                Copyright © 2012 Bellec, Lavoie-Courchesne, Dickinson, Lerch, Zijdenbos and Evans.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 07 November 2011
                : 05 March 2012
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 47, Pages: 18, Words: 13536
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                parallel computing,octave,matlab,neuroimaging,high-performance computing,pipeline,workflow,open-source

                Comments

                Comment on this article