30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Conservative Nonhormonal Options for the Treatment of Male Infertility: Antibiotics, Anti-Inflammatory Drugs, and Antioxidants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nonhormonal medical treatment can be divided into empirical, when the cause has not been identified, and nonempirical, if the pathogenic mechanism causing male infertility can be solved or ameliorated. The empirical nonhormonal medical treatment has been proposed for patients with idiopathic or noncurable oligoasthenoteratozoospermia and for normozoospermic infertile patients. Anti-inflammatory, fibrinolytic, and antioxidant compounds, oligo elements, and vitamin supplementation may be prescribed. Infection, inflammation, and/or increased oxidative stress often require a specific treatment with antibiotics, anti-inflammatory drugs, and/or antioxidants. Combined therapies can contribute to improve sperm quality.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: found
          • Article: not found

          Ascorbate is an outstanding antioxidant in human blood plasma.

          We have shown recently that the temporal order of antioxidant consumption in human blood plasma exposed to a constant flux of aqueous peroxyl radicals is ascorbate = protein thiols greater than bilirubin greater than urate greater than alpha-tocopherol and that detectable lipid peroxidation starts only after ascorbate has been consumed completely. In this paper, we show that it is indeed ascorbate that completely protects plasma lipids against detectable peroxidative damage induced by aqueous peroxyl radicals and that ascorbate is the only plasma antioxidant that can do so. Plasma devoid of ascorbate, but no other endogenous antioxidant, is extremely vulnerable to oxidant stress and susceptible to peroxidative damage to lipids. The plasma proteins' thiols, although they become oxidized immediately upon exposure to aqueous peroxyl radicals, are inefficient radical scavengers and appear to be consumed mainly by autoxidation. Our data demonstrate that ascorbate is the most effective aqueous-phase antioxidant in human blood plasma and suggest that in humans ascorbate is a physiological antioxidant of major importance for protection against diseases and degenerative processes caused by oxidant stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The role of oxidative stress and antioxidants in male fertility

            Oxidative stress results from the imbalance between production of the reactive oxygen species (ROS) and the protective effect of the antioxidant system responsible for their neutralization and removal. An excess of ROS causes a pathological reaction resulting in damage to cells and tissues. Spermatozoa are particularly vulnerable to the harmful effects of ROS. Oxidative stress affects their activity, damages DNA structure, and accelerates apoptosis, all of which consequently decrease their numbers, hinders motility and development of normal morphology, and impairs function. This leads to disturbances in fertility or embryo development disorder. The main cellular source of ROS in the semen are immature sperm cells and white blood cells. The increase in the number of leukocytes may be due to infection and inflammation, but can also be secondary to harmful environmental factors, long sexual abstinence, or varicocele. The protective antioxidant system in the semen is composed of enzymes, as well as nonenzymatic substances, which closely interact with each other to ensure optimal protection against ROS. Non–enzymatic antioxidants include vitamins A, E, C, and B complex, glutathione, pantothenic acid, coenzyme Q10 and carnitine, and micronutrients such as zinc, selenium, and copper. It seems that a deficiency of any of them can cause a decrease in total antioxidant status. In vitro and in vivo that studies demonstrate many antioxidants possess a beneficial effect on fertility and, therefore, their use is recommended as supportive therapy for the treatment of infertility in men.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress & male infertility.

              The male factor is considered a major contributory factor to infertility. Apart from the conventional causes for male infertility such as varicocoele, cryptorchidism, infections, obstructive lesions, cystic fibrosis, trauma, and tumours, a new and important cause has been identified: oxidative stress. Oxidative stress is a result of the imbalance between reactive oxygen species (ROS) and antioxidants in the body. It is a powerful mechanism that can lead to sperm damage, deformity and eventually, male infertility. This review discusses the physiological need for ROS and their role in normal sperm function. It also highlights the mechanism of production and the pathophysiology of ROS in relation to the male reproductive system and enumerate the benefits of incorporating antioxidants in clinical and experimental settings.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2017
                9 January 2017
                : 2017
                : 4650182
                Affiliations
                1Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
                2Department of Surgery, Urology Section, University of Catania, Catania, Italy
                Author notes

                Academic Editor: Yujiang Fang

                Author information
                http://orcid.org/0000-0001-6950-335X
                http://orcid.org/0000-0003-4687-7353
                http://orcid.org/0000-0002-7113-2372
                Article
                10.1155/2017/4650182
                5253172
                28164122
                a015856a-f772-45d4-891e-aded8682ab18
                Copyright © 2017 Aldo E. Calogero et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 November 2016
                : 4 December 2016
                : 5 December 2016
                Categories
                Review Article

                Comments

                Comment on this article