24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      von Willebrand factor contributes to poor outcome in a mouse model of intracerebral haemorrhage

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spontaneous intracerebral haemorrhage (ICH) is the most devastating stroke subtype and has no proven treatment. von Willebrand factor (VWF) has recently been demonstrated to promote inflammation processes. The present study investigated the pathophysiological role of VWF after experimental ICH. Functional outcomes, brain edema, blood-brain barrier (BBB) permeability, cerebral inflammation and levels of intercellular adhesion molecule-1 (ICAM-1) and matrix metalloproteinase-9 (MMP-9) were measured in a mouse model of ICH induced by autologous blood injection. We show that VWF were increased in the plasma and was accumulated in the perihematomal regions of mice subjected to ICH. Injection of VWF resulted in incerased expression of proinflammatory mediators and activation of ICAM-1 and MMP-9, associated with elevated myeloperoxidase, recruitment of neutrophils and microglia. Moreover, mice treated with VWF showed dramatically decreased pericyte coverage, more severe BBB damage and edema formation, and neuronal injury was increased compared with controls. In contrast, blocking antibodies against VWF reduced BBB damage and edema formation and improved neurological function. Together, these data identify a critical role for VWF in cerebral inflammation and BBB damage after ICH. The therapeutic interventions targeting VWF may be a novel strategy to reduce ICH-related injury.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Central nervous system pericytes in health and disease.

          Pericytes are uniquely positioned within the neurovascular unit to serve as vital integrators, coordinators and effectors of many neurovascular functions, including angiogenesis, blood-brain barrier (BBB) formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow and clearance of toxic cellular byproducts necessary for proper CNS homeostasis and neuronal function. New studies have revealed that pericyte deficiency in the CNS leads to BBB breakdown and brain hypoperfusion resulting in secondary neurodegenerative changes. Here we review recent progress in understanding the biology of CNS pericytes and their role in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of matrix metalloproteinases in delayed cortical responses after stroke.

            Matrix metalloproteinases (MMPs) are zinc-endopeptidases with multifactorial actions in central nervous system (CNS) physiology and pathology. Accumulating data suggest that MMPs have a deleterious role in stroke. By degrading neurovascular matrix, MMPs promote injury of the blood-brain barrier, edema and hemorrhage. By disrupting cell-matrix signaling and homeostasis, MMPs trigger brain cell death. Hence, there is a movement toward the development of MMP inhibitors for acute stroke therapy. But MMPs may have a different role during delayed phases after stroke. Because MMPs modulate brain matrix, they may mediate beneficial plasticity and remodeling during stroke recovery. Here, we show that MMPs participate in delayed cortical responses after focal cerebral ischemia in rats. MMP-9 is upregulated in peri-infarct cortex at 7-14 days after stroke and is colocalized with markers of neurovascular remodeling. Treatment with MMP inhibitors at 7 days after stroke suppresses neurovascular remodeling, increases ischemic brain injury and impairs functional recovery at 14 days. MMP processing of bioavailable VEGF may be involved because inhibition of MMPs reduces endogenous VEGF signals, whereas additional treatment with exogenous VEGF prevents MMP inhibitor-induced worsening of infarction. These data suggest that, contrary to MMP inhibitor therapies for acute stroke, strategies that modulate MMPs may be needed for promoting stroke recovery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke.

              Thrombolytic treatment of ischemic stroke with tissue plasminogen activator (tPA) is markedly limited owing to concerns about hemorrhagic complications and the requirement that tPA be administered within 3 h of symptoms. Here we report that tPA activation of latent platelet-derived growth factor-CC (PDGF-CC) may explain these limitations. Intraventricular injection of tPA or active PDGF-CC, in the absence of ischemia, leads to significant increases in cerebrovascular permeability. In contrast, co-injection of neutralizing antibodies to PDGF-CC with tPA blocks this increased permeability, indicating that PDGF-CC is a downstream substrate of tPA within the neurovascular unit. These effects are mediated through activation of PDGF-alpha receptors (PDGFR-alpha) on perivascular astrocytes, and treatment of mice with the PDGFR-alpha antagonist imatinib after ischemic stroke reduces both cerebrovascular permeability and hemorrhagic complications associated with late administration of thrombolytic tPA. These data demonstrate that PDGF signaling regulates blood-brain barrier permeability and suggest potential new strategies for stroke treatment.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                26 October 2016
                2016
                : 6
                Affiliations
                [1 ]State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Shanghai Medical College and Institutes of Brain Science, Fudan University , Shanghai 200032, China
                [2 ]Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep35901
                10.1038/srep35901
                5080593
                27782211
                a020670f-55e8-430f-95a7-45ab37327733
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article