37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular ATP Hydrolysis Inhibits Synaptic Transmission by Increasing pH Buffering in the Synaptic Cleft

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A slow mechanism of retinal synaptic inhibition involves hydrolysis of ATP released from pannexin 1 channels (from the tips of horizontal cell dendrites); the resulting protons and phosphates acidify the synaptic cleft, which inhibits neurotransmitter release.

          Abstract

          Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms), highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca 2+ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form of synaptic modulation may be a widespread phenomenon.

          Author Summary

          At the first retinal synapse, specific cells—horizontal cells (HCs)—inhibit photoreceptors and help to organize the receptive fields of another retinal cell type, bipolar cells. This synaptic interaction is crucial for visual contrast enhancement. Here we show that horizontal cells feed back to photoreceptors via a very fast ephaptic mechanism and a relatively slow mechanism. The slow mechanism requires ATP release via Pannexin 1 (Panx1) channels that are located on HC dendrites near the site where photoreceptors release the neurotransmitter glutamate to HCs and bipolar cells. The released ATP is hydrolyzed to produce AMP, phosphate groups, and protons; these phosphates and protons form a pH buffer, which acidifies the synaptic cleft. This slow acidification inhibits presynaptic calcium channels and consequently reduces the neurotransmitter release of photoreceptors. This demonstrates a new way in which ATP release can be involved in synaptic modulation. Surprisingly, the action of ATP is not purinergic but is mediated via changes in the pH buffer capacity in the synaptic cleft. Given the broad expression of Panx1 channels in the nervous system and the suggestion that Panx1 function underlies stabilization of synaptic plasticity and is needed for learning, we anticipate that this mechanism will be more widespread than just occurring at the first retinal synapse.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Pannexins, a family of gap junction proteins expressed in brain.

          Database search has led to the identification of a family of proteins, the pannexins, which share some structural features with the gap junction forming proteins of invertebrates and vertebrates. The function of these proteins has remained unclear so far. To test the possibility that pannexins underlie electrical communication in the brain, we have investigated their tissue distribution and functional properties. Here, we show that two of these genes, pannexin 1 (Px1) and Px2, are abundantly expressed in the CNS. In many neuronal cell populations, including hippocampus, olfactory bulb, cortex and cerebellum, there is coexpression of both pannexins, whereas in other brain regions, e.g., white matter, only Px1-positive cells were found. On expression in Xenopus oocytes, Px1, but not Px2 forms functional hemichannels. Coinjection of both pannexin RNAs results in hemichannels with functional properties that are different from those formed by Px1 only. In paired oocytes, Px1, alone and in combination with Px2, induces the formation of intercellular channels. The functional characteristics of homomeric Px1 versus heteromeric Px1/Px2 channels and the different expression patterns of Px1 and Px2 in the brain indicate that pannexins form cell type-specific gap junctions with distinct properties that may subserve different functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium.

            The ability for long-range communication through intercellular calcium waves is inherent to cells of many tissues. A dual propagation mode for these waves includes passage of IP3 through gap junctions as well as an extracellular pathway involving ATP. The wave can be regenerative and include ATP-induced ATP release via an unknown mechanism. Here, we show that pannexin 1 channels can be activated by extracellular ATP acting through purinergic receptors of the P2Y group as well as by cytoplasmic calcium. Based on its properties, including ATP permeability, pannexin 1 may be involved in both initiation and propagation of calcium waves.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Probenecid, a gout remedy, inhibits pannexin 1 channels.

              Probenecid is a well-established drug for the treatment of gout and is thought to act on an organic anion transporter, thereby affecting uric acid excretion in the kidney by blocking urate reuptake. Probenecid also has been shown to affect ATP release, leading to the suggestion that ATP release involves an organic anion transporter. Other pharmacological evidence and the observation of dye uptake, however, suggest that the nonvesicular release of ATP is mediated by large membrane channels, with pannexin 1 being a prominent candidate. In the present study we show that probenecid inhibited currents mediated by pannexin 1 channels in the same concentration range as observed for inhibition of transport processes. Probenecid did not affect channels formed by connexins. Thus probenecid allows for discrimination between channels formed by connexins and pannexins.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                May 2014
                20 May 2014
                : 12
                : 5
                : e1001864
                Affiliations
                [1]Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
                University of Washington, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: RV LK MH JK TS MK. Performed the experiments: RV LK MH VC JK TS MK. Analyzed the data: RV LK MH VC JK TS MK. Contributed reagents/materials/analysis tools: RV LK MH JK TS MK. Wrote the paper: RV LK MH VC JK TS MK.

                Article
                PBIOLOGY-D-13-04536
                10.1371/journal.pbio.1001864
                4028192
                24844296
                a02fa541-609f-4382-ab2a-ac7c6df30782
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 November 2013
                : 10 April 2014
                Page count
                Pages: 17
                Funding
                This work was supported by institutional funds of the Netherlands Institute for Neuroscience and by grants from The Netherlands Organization for Scientific Research (NWO) through ALW-NWO and ZonMW-NWO. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Neuroscience
                Sensory Systems
                Visual System
                Research and Analysis Methods
                Specimen Preparation and Treatment
                Mechanical Treatment of Specimens
                Specimen Disruption
                Electroporation

                Life sciences
                Life sciences

                Comments

                Comment on this article