33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcribed-ultra conserved region expression is associated with outcome in high-risk neuroblastoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Neuroblastoma is the most common, pediatric, extra-cranial, malignant solid tumor. Despite multimodal therapeutic protocols, outcome for children with a high-risk clinical phenotype remains poor, with long-term survival still less than 40%. Hereby, we evaluated the potential of non-coding RNA expression to predict outcome in high-risk, stage 4 neuroblastoma.

          Methods

          We analyzed expression of 481 Ultra Conserved Regions (UCRs) by reverse transcription-quantitative real-time PCR and of 723 microRNAs by microarrays in 34 high-risk, stage 4 neuroblastoma patients.

          Results

          First, the comparison of 8 short- versus 12 long-term survivors showed that 54 UCRs were significantly ( P < 0.0491) over-expressed in the former group. For 48 Ultra Conserved Region (UCRs) the expression levels above the cut-off values defined by ROC curves were strongly associated with good-outcome (OS: 0.0001 < P < 0.0185, EFS: 0.0001 < P < 0.0491). Then we tested the Transcribed-UCR (T-UCR) threshold risk-prediction model on an independent cohort of 14 patients. The expression profile of 28 T-UCRs was significantly associated to prognosis and at least 15 up-regulated T-UCRs are needed to discriminate ( P < 0.0001) short- from long-survivors at the highest sensitivity and specificity (94.12%). We also identified a signature of 13 microRNAs differently expressed between long- and short-surviving patients. The comparative analysis of the two classes of non-coding RNAs disclosed that 9 T-UCRs display their expression level that are inversely correlated with expression of 5 complementary microRNAs of the signature, indicating a negative regulation of T-UCRs by direct interaction with microRNAs. Moreover, 4 microRNAs down-regulated in tumors of long-survivors target 3 genes implicated in neuronal differentiation, that are known to be over-expressed in low-risk tumors.

          Conclusions

          Our pilot study suggests that a deregulation of the microRNA/T-UCR network may play an important role in the pathogenesis of neuroblastoma. After further validation on a larger independent set of samples, such findings may be applied as the first T-UCR prognostic signature for high-risk neuroblastoma patients.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Comprehensive analysis of CpG islands in human chromosomes 21 and 22.

          CpG islands are useful markers for genes in organisms containing 5-methylcytosine in their genomes. In addition, CpG islands located in the promoter regions of genes can play important roles in gene silencing during processes such as X-chromosome inactivation, imprinting, and silencing of intragenomic parasites. The generally accepted definition of what constitutes a CpG island was proposed in 1987 by Gardiner-Garden and Frommer [Gardiner-Garden, M. & Frommer, M. (1987) J. Mol. Biol. 196, 261-282] as being a 200-bp stretch of DNA with a C+G content of 50% and an observed CpG/expected CpG in excess of 0.6. Any definition of a CpG island is somewhat arbitrary, and this one, which was derived before the sequencing of mammalian genomes, will include many sequences that are not necessarily associated with controlling regions of genes but rather are associated with intragenomic parasites. We have therefore used the complete genomic sequences of human chromosomes 21 and 22 to examine the properties of CpG islands in different sequence classes by using a search algorithm that we have developed. Regions of DNA of greater than 500 bp with a G+C equal to or greater than 55% and observed CpG/expected CpG of 0.65 were more likely to be associated with the 5' regions of genes and this definition excluded most Alu-repetitive elements. We also used genome sequences to show strong CpG suppression in the human genome and slight suppression in Drosophila melanogaster and Saccharomyces cerevisiae. This finding is compatible with the recent detection of 5-methylcytosine in Drosophila, and might suggest that S. cerevisiae has, or once had, CpG methylation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A microRNA DNA methylation signature for human cancer metastasis.

            MicroRNAs (miRNAs) are small, noncoding RNAs that can contribute to cancer development and progression by acting as oncogenes or tumor suppressor genes. Recent studies have also linked different sets of miRNAs to metastasis through either the promotion or suppression of this malignant process. Interestingly, epigenetic silencing of miRNAs with tumor suppressor features by CpG island hypermethylation is also emerging as a common hallmark of human tumors. Thus, we wondered whether there was a miRNA hypermethylation profile characteristic of human metastasis. We used a pharmacological and genomic approach to reveal this aberrant epigenetic silencing program by treating lymph node metastatic cancer cells with a DNA demethylating agent followed by hybridization to an expression microarray. Among the miRNAs that were reactivated upon drug treatment, miR-148a, miR-34b/c, and miR-9 were found to undergo specific hypermethylation-associated silencing in cancer cells compared with normal tissues. The reintroduction of miR-148a and miR-34b/c in cancer cells with epigenetic inactivation inhibited their motility, reduced tumor growth, and inhibited metastasis formation in xenograft models, with an associated down-regulation of the miRNA oncogenic target genes, such as C-MYC, E2F3, CDK6, and TGIF2. Most important, the involvement of miR-148a, miR-34b/c, and miR-9 hypermethylation in metastasis formation was also suggested in human primary malignancies (n = 207) because it was significantly associated with the appearance of lymph node metastasis. Our findings indicate that DNA methylation-associated silencing of tumor suppressor miRNAs contributes to the development of human cancer metastasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment.

              Based on preliminary experience, there was a need for modifications and clarifications in the International Neuroblastoma Staging System (INSS) and International Neuroblastoma Response Criteria (INRC). In 1988, a proposal was made to establish an internationally accepted staging system for neuroblastoma, as well as consistent criteria for confirming the diagnosis and determining response to therapy (Brodeur GM, et al: J Clin Oncol 6:1874-1881, 1988). A meeting was held to review experience with the INSS and INRC and to revise or clarify the language and intent of the originally proposed criteria. Substantial changes included a redefinition of the midline, restrictions on age and bone marrow involvement for stage 4S, and the recommendation that meta-iodobenzylguanidine (MIBG) scanning be implemented for evaluating the extent of disease. Other modifications and clarifications of the INSS and INRC are presented. In addition, the criteria for the diagnosis of neuroblastoma were modified. Finally, proposals were made for the development of risk groups that incorporate both clinical and biologic features in the prediction of prognosis. The biologic features that were deemed important to evaluate prospectively included serum ferritin, neuron-specific enolase (NSE), and lactic dehydrogenase (LDH); tumor histology; tumor-cell DNA content; assessment of N-myc copy number; assessment of 1p deletion by cytogenetic or molecular methods; and TRK-A expression. Modifications of the INSS and INRC made at this conference are presented. In addition, proposals are made for future modifications in these criteria and for the development of International Neuroblastoma Risk Groups.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2009
                15 December 2009
                : 9
                : 441
                Affiliations
                [1 ]Translational Paediatric Oncology, National Cancer Research Institute (IST), Largo R. Benzi 10, Genoa, 16132, Italy
                [2 ]Molecular Epidemiology, National Cancer Research Institute (IST), Largo R. Benzi 10, Genoa, 16132, Italy
                [3 ]Department of Oncology and Genetics (DOBIG), University of Genoa, Largo R. Benzi 10, Genoa, 16132, Italy
                [4 ]Department of Hematology-Oncology, Gaslini Institute, Largo G. Gaslini 5, Genoa, 16148, Italy
                [5 ]Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via della Pisana 235, Roma, 00163, Italy
                Article
                1471-2407-9-441
                10.1186/1471-2407-9-441
                2804711
                20003513
                a035074a-19a8-47fc-a021-450dec54b993
                Copyright ©2009 Scaruffi et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 August 2009
                : 15 December 2009
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article