64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Based Taxonomic Classification of Bacteroidetes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogenetic analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved.

          Related collections

          Most cited references262

          • Record: found
          • Abstract: not found
          • Article: not found

          Precise Measurement of the G+C Content of Deoxyribonucleic Acid by High-Performance Liquid Chromatography

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison

            The pragmatic species concept for Bacteria and Archaea is ultimately based on DNA-DNA hybridization (DDH). While enabling the taxonomist, in principle, to obtain an estimate of the overall similarity between the genomes of two strains, this technique is tedious and error-prone and cannot be used to incrementally build up a comparative database. Recent technological progress in the area of genome sequencing calls for bioinformatics methods to replace the wet-lab DDH by in-silico genome-to-genome comparison. Here we investigate state-of-the-art methods for inferring whole-genome distances in their ability to mimic DDH. Algorithms to efficiently determine high-scoring segment pairs or maximally unique matches perform well as a basis of inferring intergenomic distances. The examined distance functions, which are able to cope with heavily reduced genomes and repetitive sequence regions, outperform previously described ones regarding the correlation with and error ratios in emulating DDH. Simulation of incompletely sequenced genomes indicates that some distance formulas are very robust against missing fractions of genomic information. Digitally derived genome-to-genome distances show a better correlation with 16S rRNA gene sequence distances than DDH values. The future perspectives of genome-informed taxonomy are discussed, and the investigated methods are made available as a web service for genome-based species delineation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Environmental and Gut Bacteroidetes: The Food Connection

              Members of the diverse bacterial phylum Bacteroidetes have colonized virtually all types of habitats on Earth. They are among the major members of the microbiota of animals, especially in the gastrointestinal tract, can act as pathogens and are frequently found in soils, oceans and freshwater. In these contrasting ecological niches, Bacteroidetes are increasingly regarded as specialists for the degradation of high molecular weight organic matter, i.e., proteins and carbohydrates. This review presents the current knowledge on the role and mechanisms of polysaccharide degradation by Bacteroidetes in their respective habitats. The recent sequencing of Bacteroidetes genomes confirms the presence of numerous carbohydrate-active enzymes covering a large spectrum of substrates from plant, algal, and animal origin. Comparative genomics reveal specific Polysaccharide Utilization Loci shared between distantly related members of the phylum, either in environmental or gut-associated species. Moreover, Bacteroidetes genomes appear to be highly plastic and frequently reorganized through genetic rearrangements, gene duplications and lateral gene transfers (LGT), a feature that could have driven their adaptation to distinct ecological niches. Evidence is accumulating that the nature of the diet shapes the composition of the intestinal microbiota. We address the potential links between gut and environmental bacteria through food consumption. LGT can provide gut bacteria with original sets of utensils to degrade otherwise refractory substrates found in the diet. A more complete understanding of the genetic gateways between food-associated environmental species and intestinal microbial communities sheds new light on the origin and evolution of Bacteroidetes as animals’ symbionts. It also raises the question as to how the consumption of increasingly hygienic and processed food deprives our microbiota from useful environmental genes and possibly affects our health.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                20 December 2016
                2016
                : 7
                : 2003
                Affiliations
                [1] 1Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
                [2] 2Department of Energy Joint Genome Institute (DOE JGI) Walnut Creek, CA, USA
                [3] 3Department of Biological Sciences, Faculty of Science, King Abdulaziz University Jeddah, Saudi Arabia
                [4] 4School of Biology, Newcastle University Newcastle upon Tyne, UK
                Author notes

                Edited by: Martin G. Klotz, Queens College, City University of New York, USA

                Reviewed by: Eddie Cytryn, Agricultural Research Organization, Israel; John Phillip Bowman, University of Tasmania, Australia

                *Correspondence: Markus Göker markus.goeker@ 123456dsmz.de

                This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology

                †These authors have contributed equally to this work.

                Article
                10.3389/fmicb.2016.02003
                5167729
                28066339
                a03b2d3d-e57d-4e73-aba9-a2a25f32e64d
                Copyright © 2016 Hahnke, Meier-Kolthoff, García-López, Mukherjee, Huntemann, Ivanova, Woyke, Kyrpides, Klenk and Göker.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 May 2016
                : 30 November 2016
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 319, Pages: 37, Words: 29694
                Funding
                Funded by: Lawrence Berkeley National Laboratory 10.13039/100006235
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                g+c content,genome blast distance phylogeny,gliding motility,gut microbiome,marine microbiology,one thousand microbial genomes project,phylogenetic classification,bacteroidaeota-rhodothermaeota-balneolaeota-chlorobaeota superphylum

                Comments

                Comment on this article