34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome reduction boosts heterologous gene expression in Pseudomonas putida

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The implementation of novel platform organisms to be used as microbial cell factories in industrial applications is currently the subject of intense research. Ongoing efforts include the adoption of Pseudomonas putida KT2440 variants with a reduced genome as the functional chassis for biotechnological purposes. In these strains, dispensable functions removed include flagellar motility (1.1% of the genome) and a number of open reading frames expected to improve genotypic and phenotypic stability of the cells upon deletion (3.2% of the genome).

          Results

          In this study, two previously constructed multiple-deletion P. putida strains were systematically evaluated as microbial cell factories for heterologous protein production and compared to the parental bacterium (strain KT2440) with regards to several industrially-relevant physiological traits. Energetic parameters were quantified at different controlled growth rates in continuous cultivations and both strains had a higher adenosine triphosphate content, increased adenylate energy charges, and diminished maintenance demands than the wild-type strain. Under all the conditions tested the mutants also grew faster, had enhanced biomass yields and showed higher viability, and displayed increased plasmid stability than the parental strain. In addition to small-scale shaken-flask cultivations, the performance of the genome-streamlined strains was evaluated in larger scale bioreactor batch cultivations taking a step towards industrial growth conditions. When the production of the green fluorescent protein (used as a model heterologous protein) was assessed in these cultures, the mutants reached a recombinant protein yield with respect to biomass up to 40% higher than that of P. putida KT2440.

          Conclusions

          The two streamlined-genome derivatives of P. putida KT2440 outcompeted the parental strain in every industrially-relevant trait assessed, particularly under the working conditions of a bioreactor. Our results demonstrate that these genome-streamlined bacteria are not only robust microbial cell factories on their own, but also a promising foundation for further biotechnological applications.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12934-015-0207-7) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

          <p>The first two editions of this manual have been mainstays of molecular biology for nearly twenty years, with an unrivalled reputation for reliability, accuracy, and clarity.<br>In this new edition, authors Joseph Sambrook and David Russell have completely updated the book, revising every protocol and adding a mass of new material, to broaden its scope and maintain its unbeatable value for studies in genetics, molecular cell biology, developmental biology, microbiology, neuroscience, and immunology.<br>Handsomely redesigned and presented in new bindings of proven durability, this three–volume work is essential for everyone using today’s biomolecular techniques.<br>The opening chapters describe essential techniques, some well–established, some new, that are used every day in the best laboratories for isolating, analyzing and cloning DNA molecules, both large and small.<br>These are followed by chapters on cDNA cloning and exon trapping, amplification of DNA, generation and use of nucleic acid probes, mutagenesis, and DNA sequencing.<br>The concluding chapters deal with methods to screen expression libraries, express cloned genes in both prokaryotes and eukaryotic cells, analyze transcripts and proteins, and detect protein–protein interactions.<br>The Appendix is a compendium of reagents, vectors, media, technical suppliers, kits, electronic resources and other essential information.<br>As in earlier editions, this is the only manual that explains how to achieve success in cloning and provides a wealth of information about why techniques work, how they were first developed, and how they have evolved. </p>
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440.

            Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Measurement Error Models

                Bookmark

                Author and article information

                Contributors
                lieder@ibvt.uni-stuttgart.de
                pablo.nikel@cnb.csic.es
                vdlorenzo@cnb.csic.es
                takors@ibvt.uni-stuttgart.de
                Journal
                Microb Cell Fact
                Microb. Cell Fact
                Microbial Cell Factories
                BioMed Central (London )
                1475-2859
                21 February 2015
                21 February 2015
                2015
                : 14
                : 23
                Affiliations
                [ ]Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
                [ ]Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049 Madrid, Spain
                Article
                207
                10.1186/s12934-015-0207-7
                4352270
                25890048
                a03f806a-75c5-42fb-9ebd-fe9cbcea0c71
                © Lieder et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 13 November 2014
                : 11 February 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Biotechnology
                pseudomonas putida,reduced genome,heterologous gene expression,chemostat,energy maintenance,metabolic engineering,microbial cell factory

                Comments

                Comment on this article