9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of the Neutrophil in the Pathogenesis of Advanced Cancer and Impaired Responsiveness to Therapy†

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Notwithstanding the well-recognized involvement of chronic neutrophilic inflammation in the initiation phase of many types of epithelial cancers, a growing body of evidence has also implicated these cells in the pathogenesis of the later phases of cancer development, specifically progression and spread. In this setting, established tumors have a propensity to induce myelopoiesis and to recruit neutrophils to the tumor microenvironment (TME), where these cells undergo reprogramming and transitioning to myeloid-derived suppressor cells (MDSCs) with a pro-tumorigenic phenotype. In the TME, these MDSCs, via the production of a broad range of mediators, not only attenuate the anti-tumor activity of tumor-infiltrating lymphocytes, but also exclude these cells from the TME. Realization of the pro-tumorigenic activities of MDSCs of neutrophilic origin has resulted in the development of a range of adjunctive strategies targeting the recruitment of these cells and/or the harmful activities of their mediators of immunosuppression. Most of these are in the pre-clinical or very early clinical stages of evaluation. Notable exceptions, however, are several pharmacologic, allosteric inhibitors of neutrophil/MDSC CXCR1/2 receptors. These agents have entered late-stage clinical assessment as adjuncts to either chemotherapy or inhibitory immune checkpoint-targeted therapy in patients with various types of advanced malignancy. The current review updates the origins and identities of MDSCs of neutrophilic origin and their spectrum of immunosuppressive mediators, as well as current and pipeline MDSC-targeted strategies as potential adjuncts to cancer therapies. These sections are preceded by a consideration of the carcinogenic potential of neutrophils.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          The biological functions of T helper 17 cell effector cytokines in inflammation.

          T helper 17 (Th17) cells belong to a recently identified T helper subset, in addition to the traditional Th1 and Th2 subsets. These cells are characterized as preferential producers of interleukin-17A (IL-17A), IL-17F, IL-21, and IL-22. Th17 cells and their effector cytokines mediate host defensive mechanisms to various infections, especially extracellular bacteria infections, and are involved in the pathogenesis of many autoimmune diseases. The receptors for IL-17 and IL-22 are broadly expressed on various epithelial tissues. The effector cytokines of Th17 cells, therefore, mediate the crucial crosstalk between immune system and tissues, and play indispensable roles in tissue immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps.

            Neutrophils, the most abundant type of leukocytes in blood, can form neutrophil extracellular traps (NETs). These are pathogen-trapping structures generated by expulsion of the neutrophil's DNA with associated proteolytic enzymes. NETs produced by infection can promote cancer metastasis. We show that metastatic breast cancer cells can induce neutrophils to form metastasis-supporting NETs in the absence of infection. Using intravital imaging, we observed NET-like structures around metastatic 4T1 cancer cells that had reached the lungs of mice. We also found NETs in clinical samples of triple-negative human breast cancer. The formation of NETs stimulated the invasion and migration of breast cancer cells in vitro. Inhibiting NET formation or digesting NETs with deoxyribonuclease I (DNase I) blocked these processes. Treatment with NET-digesting, DNase I-coated nanoparticles markedly reduced lung metastases in mice. Our data suggest that induction of NETs by cancer cells is a previously unidentified metastasis-promoting tumor-host interaction and a potential therapeutic target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer.

              Antigen-specific CD8+ T-cell tolerance, induced by myeloid-derived suppressor cells (MDSCs), is one of the main mechanisms of tumor escape. Using in vivo models, we show here that MDSCs directly disrupt the binding of specific peptide-major histocompatibility complex (pMHC) dimers to CD8-expressing T cells through nitration of tyrosines in a T-cell receptor (TCR)-CD8 complex. This process makes CD8-expressing T cells unable to bind pMHC and to respond to the specific peptide, although they retain their ability to respond to nonspecific stimulation. Nitration of TCR-CD8 is induced by MDSCs through hyperproduction of reactive oxygen species and peroxynitrite during direct cell-cell contact. Molecular modeling suggests specific sites of nitration that might affect the conformational flexibility of TCR-CD8 and its interaction with pMHC. These data identify a previously unknown mechanism of T-cell tolerance in cancer that is also pertinent to many pathological conditions associated with accumulation of MDSCs.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                01 April 2020
                April 2020
                : 25
                : 7
                : 1618
                Affiliations
                [1 ]Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; helen.steel@ 123456up.ac.za (H.C.S.); atheron@ 123456up.ac.za (A.J.T.); ronald.anderson@ 123456up.ac.za (R.A.)
                [2 ]The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; teresasmit@ 123456mweb.co.za
                Author notes
                [* ]Correspondence: bernardo.rapoport@ 123456up.ac.za ; Tel.: +27-11-880-4169
                [†]

                Neutrophils and cancer.

                Author information
                https://orcid.org/0000-0001-7610-3653
                https://orcid.org/0000-0001-5899-4472
                Article
                molecules-25-01618
                10.3390/molecules25071618
                7180559
                32244751
                a04386a6-7b2f-47f5-902e-9894e1895e40
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 February 2020
                : 26 March 2020
                Categories
                Review

                chemokines,cxc receptors 1 and 2,immunotherapy,granulocyte colony-stimulating factor,immune checkpoint inhibitors,myeloid-derived suppressor cells,reactive oxygen species,reparixin,sx-682,tumor-infiltrating lymphocytes

                Comments

                Comment on this article