10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      p300/β-Catenin Interactions Regulate Adult Progenitor Cell Differentiation Downstream of WNT5a/Protein Kinase C (PKC).

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Maintenance of stem/progenitor cell-progeny relationships is required for tissue homeostasis during normal turnover and repair. Wnt signaling is implicated in both maintenance and differentiation of adult stem/progenitor cells, yet how this pathway serves these dichotomous roles remains enigmatic. We previously proposed a model suggesting that specific interaction of β-catenin with either of the homologous Kat3 co-activators, p300 or CREB-binding protein, differentially regulates maintenance versus differentiation of embryonic stem cells. Limited knowledge of endogenous mechanisms driving differential β-catenin/co-activator interactions and their role in adult somatic stem/progenitor cell maintenance versus differentiation led us to explore this process in defined models of adult progenitor cell differentiation. We focused primarily on alveolar epithelial type II (AT2) cells, progenitors of distal lung epithelium, and identified a novel axis whereby WNT5a/protein kinase C (PKC) signaling regulates specific β-catenin/co-activator interactions to promote adult progenitor cell differentiation. p300/β-catenin but not CBP/β-catenin interaction increases as AT2 cells differentiate to a type I (AT1) cell-like phenotype. Additionally, p300 transcriptionally activates AT1 cell-specific gene Aqp-5. IQ-1, a specific inhibitor of p300/β-catenin interaction, prevents differentiation of not only primary AT2 cells, but also tracheal epithelial cells, and C2C12 myoblasts. p300 phosphorylation at Ser-89 enhances p300/β-catenin interaction, concurrent with alveolar epithelial cell differentiation. WNT5a, a traditionally non-canonical WNT ligand regulates Ser-89 phosphorylation and p300/β-catenin interactions in a PKC-dependent manner, likely involving PKCζ. These studies identify a novel intersection of canonical and non-canonical Wnt signaling in adult progenitor cell differentiation that has important implications for targeting β-catenin to modulate adult progenitor cell behavior in disease.

          Related collections

          Author and article information

          Journal
          J. Biol. Chem.
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          1083-351X
          0021-9258
          Mar 18 2016
          : 291
          : 12
          Affiliations
          [1 ] From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine.
          [2 ] From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033.
          [3 ] the Departments of Pediatrics, Division of Neonatology.
          [4 ] Biochemistry and Molecular Biology, and.
          [5 ] the Department of Medicine, School of Medicine, Washington University, St. Louis, Missouri 63110, and.
          [6 ] From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Pathology, the Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089.
          [7 ] Biochemistry and Molecular Biology, and the Center for Molecular Pathways and Drug Discovery, and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033.
          [8 ] From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Biochemistry and Molecular Biology, and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, zborok@med.usc.edu.
          Article
          M115.706416
          10.1074/jbc.M115.706416
          4813575
          26833564
          a0497c36-34a5-4737-8d17-f78ddc3462a4
          History

          Wnt pathway,beta-catenin (β-catenin),differentiation,p300,protein kinase C (PKC),protein-protein interaction

          Comments

          Comment on this article