13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of polyvalencies of glycotopes on the binding of a lectin from the edible mushroom, Agaricus bisporus.

      Biochemical Journal
      Agaricales, chemistry, Agaricus, Binding Sites, Carbohydrate Conformation, Carbohydrate Sequence, Glycoproteins, isolation & purification, Humans, Kinetics, Lectins, metabolism, Molecular Sequence Data, Oligosaccharides, pharmacology, Polysaccharides, alpha-Fetoproteins

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Agaricus bisporus agglutinin (ABA) isolated from edible mushroom has a potent anti-proliferative effect on malignant colon cells with considerable therapeutic potential as an anti-neoplastic agent. Since previous studies on the structural requirement for binding were limited to molecular or submolecular levels of Galbeta1-3GalNAc (T; Thomsen-Friedenreich disaccharide glycotope; where Gal represents D-galactopyranose and GalNAc represents 2-acetamido-2-deoxy-D-galactopyranose) and its derivatives, the binding properties of ABA were further investigated using our collection of glycans by enzyme-linked lectinosorbent assay and lectin-glycan inhibition assay. The results indicate that polyvalent Galbeta1-related glycotopes, GalNAcalpha1-Ser/Thr (Tn), and their cryptoforms, are the most potent factor for ABA binding. They were up to 5.5x10(5) and 4.7x10(6) times more active than monomeric T and GalNAc respectively. The affinity of ABA for ligands can be ranked as: multivalent T (alpha) (Galbeta1-3GalNAcalpha1-), Tn and I / II (Galbeta1-3GlcNac/Galbeta1-4GlcNAc, where GlcNAc represents 2-acetamido-2-deoxy-D-glucopyranose)>monomeric T (alpha) and Tn > I >GalNAc> II, L (Galbeta1-4Glc, where Glc represents D-glucopyranose) and Gal (inactive). These specific binding features of ABA establish the importance of affinity enhancement by high-density polyvalent (versus multiantennary I / II) glycotopes and facilitate our understanding of the lectin receptor recognition events relevant to its biological activities.

          Related collections

          Author and article information

          Comments

          Comment on this article