15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sex differences in stress-related alcohol use

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rates of alcohol use disorder (AUD) have increased in women by 84% over the past ten years relative to a 35% increase in men. This substantive increase in female drinking is alarming given that women experience greater alcohol-related health consequences compared to men. Stress is strongly associated with all phases of alcohol addiction, including drinking initiation, maintenance, and relapse for both women and men, but plays an especially critical role for women. The purpose of the present narrative review is to highlight what is known about sex differences in the relationship between stress and drinking. The critical role stress reactivity and negative affect play in initiating and maintaining alcohol use in women is addressed, and the available evidence for sex differences in drinking for negative reinforcement as it relates to brain stress systems is presented. This review discusses the critical structures and neurotransmitters that may underlie sex differences in stress-related alcohol use (e.g., prefrontal cortex, amygdala, norepinephrine, corticotropin releasing factor, and dynorphin), the involvement of sex and stress in alcohol-induced neurodegeneration, and the role of ovarian hormones in stress-related drinking. Finally, the potential avenues for the development of sex-appropriate pharmacological and behavioral treatments for AUD are identified. Overall, women are generally more likely to drink to regulate negative affect and stress reactivity. Sex differences in the onset and maintenance of alcohol use begin to develop during adolescence, coinciding with exposure to early life stress. These factors continue to affect alcohol use into adulthood, when reduced responsivity to stress, increased affect-related psychiatric comorbidities and alcohol-induced neurodegeneration contribute to chronic and problematic alcohol use, particularly for women. However, current research is limited regarding the examination of sex in the initiation and maintenance of alcohol use. Probing brain stress systems and associated brain regions is an important future direction for developing sex-appropriate treatments to address the role of stress in AUD.

          Highlights

          • Rates of AUD have increased in women by 84% in the past 10 years.

          • The consideration of sex in addiction research has historically been inadequate.

          • Stress plays a critical role in initiating and maintaining alcohol use in women.

          • Alterations in stress pathophysiology may drive continued alcohol use in women.

          • Treatments targeted at sex-dependent factors which maintain drinking is critical.

          Related collections

          Most cited references183

          • Record: found
          • Abstract: found
          • Article: not found

          Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications.

          The loss of control over drug intake that occurs in addiction was initially believed to result from disruption of subcortical reward circuits. However, imaging studies in addictive behaviours have identified a key involvement of the prefrontal cortex (PFC) both through its regulation of limbic reward regions and its involvement in higher-order executive function (for example, self-control, salience attribution and awareness). This Review focuses on functional neuroimaging studies conducted in the past decade that have expanded our understanding of the involvement of the PFC in drug addiction. Disruption of the PFC in addiction underlies not only compulsive drug taking but also accounts for the disadvantageous behaviours that are associated with addiction and the erosion of free will.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway.

            MicroRNAs are a family of regulatory molecules involved in many physiological processes, including differentiation and activation of cells of the immune system. We found that brain-specific miR-124 is expressed in microglia but not in peripheral monocytes or macrophages. When overexpressed in macrophages, miR-124 directly inhibited the transcription factor CCAAT/enhancer-binding protein-α (C/EBP-α) and its downstream target PU.1, resulting in transformation of these cells from an activated phenotype into a quiescent CD45(low), major histocompatibility complex (MHC) class II(low) phenotype resembling resting microglia. During experimental autoimmune encephalomyelitis (EAE), miR-124 was downregulated in activated microglia. Peripheral administration of miR-124 in EAE caused systemic deactivation of macrophages, reduced activation of myelin-specific T cells and marked suppression of disease. Conversely, knockdown of miR-124 in microglia and macrophages resulted in activation of these cells in vitro and in vivo. These findings identify miR-124 both as a key regulator of microglia quiescence in the central nervous system and as a previously unknown modulator of monocyte and macrophage activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolving knowledge of sex differences in brain structure, function, and chemistry.

              Clinical and epidemiologic evidence demonstrates sex differences in the prevalence and course of various psychiatric disorders. Understanding sex-specific brain differences in healthy individuals is a critical first step toward understanding sex-specific expression of psychiatric disorders. Here, we evaluate evidence on sex differences in brain structure, chemistry, and function using imaging methodologies, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), and structural magnetic resonance imaging (MRI) in mentally healthy individuals. MEDLINE searches of English-language literature (1980-November 2006) using the terms sex, gender, PET, SPECT, MRI, fMRI, morphometry, neurochemistry, and neurotransmission were performed to extract relevant sources. The literature suggests that while there are many similarities in brain structure, function, and neurotransmission in healthy men and women, there are important differences that distinguish the male from the female brain. Overall, brain volume is greater in men than women; yet, when controlling for total volume, women have a higher percentage of gray matter and men a higher percentage of white matter. Regional volume differences are less consistent. Global cerebral blood flow is higher in women than in men. Sex-specific differences in dopaminergic, serotonergic, and gamma-aminobutyric acid (GABA)ergic markers indicate that male and female brains are neurochemically distinct. Insight into the etiology of sex differences in the normal living human brain provides an important foundation to delineate the pathophysiological mechanisms underlying sex differences in neuropsychiatric disorders and to guide the development of sex-specific treatments for these devastating brain disorders.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neurobiol Stress
                Neurobiol Stress
                Neurobiology of Stress
                Elsevier
                2352-2895
                08 February 2019
                February 2019
                08 February 2019
                : 10
                : 100149
                Affiliations
                [a ]Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
                [b ]VA Connecticut Healthcare System, West Haven, CT, 06516, USA
                [c ]Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, 06519, USA
                Author notes
                []Corresponding author. 2 Church Street South, Suite 109, Yale School of Medicine, New Haven, CT, 06519, USA. sherry.mckee@ 123456yale.edu
                [1]

                Dual first authorship.

                Article
                S2352-2895(18)30072-9 100149
                10.1016/j.ynstr.2019.100149
                6430711
                30949562
                a055b9a0-98f6-44f4-9b48-9ec78c68dbd0
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 24 August 2018
                : 30 January 2019
                : 30 January 2019
                Categories
                Articles from the Special Issue on Stress and substance abuse throughout development; Edited by Roger Sorensen, Da-Yu Wu, Karen Sirocco, Cora lee Wetherington and Rita Valentino

                alcohol use disorder,stress,sex differences,female,brain stress systems

                Comments

                Comment on this article