263
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Confirmation of functional zones within the human subthalamic nucleus: Patterns of connectivity and sub-parcellation using diffusion weighted imaging

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.

          Highlights

          ► Three distinct sub-regions within the human STN are demonstrated in vivo using DWI. ► Limbic, associative and motor zones are labelled based on the regional connectivity. ► The findings agree with previous results from the animal literature. ► A somatotopic arrangement of STN projections to subcortical structures is shown. ► An overlap between motor STN projections and extra-STN hemiballismus is demonstrated.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          Circos: an information aesthetic for comparative genomics.

          We created a visualization tool called Circos to facilitate the identification and analysis of similarities and differences arising from comparisons of genomes. Our tool is effective in displaying variation in genome structure and, generally, any other kind of positional relationships between genomic intervals. Such data are routinely produced by sequence alignments, hybridization arrays, genome mapping, and genotyping studies. Circos uses a circular ideogram layout to facilitate the display of relationships between pairs of positions by the use of ribbons, which encode the position, size, and orientation of related genomic elements. Circos is capable of displaying data as scatter, line, and histogram plots, heat maps, tiles, connectors, and text. Bitmap or vector images can be created from GFF-style data inputs and hierarchical configuration files, which can be easily generated by automated tools, making Circos suitable for rapid deployment in data analysis and reporting pipelines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability.

            Active contour segmentation and its robust implementation using level set methods are well-established theoretical approaches that have been studied thoroughly in the image analysis literature. Despite the existence of these powerful segmentation methods, the needs of clinical research continue to be fulfilled, to a large extent, using slice-by-slice manual tracing. To bridge the gap between methodological advances and clinical routine, we developed an open source application called ITK-SNAP, which is intended to make level set segmentation easily accessible to a wide range of users, including those with little or no mathematical expertise. This paper describes the methods and software engineering philosophy behind this new tool and provides the results of validation experiments performed in the context of an ongoing child autism neuroimaging study. The validation establishes SNAP intrarater and interrater reliability and overlap error statistics for the caudate nucleus and finds that SNAP is a highly reliable and efficient alternative to manual tracing. Analogous results for lateral ventricle segmentation are provided.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A fast diffeomorphic image registration algorithm.

              This paper describes DARTEL, which is an algorithm for diffeomorphic image registration. It is implemented for both 2D and 3D image registration and has been formulated to include an option for estimating inverse consistent deformations. Nonlinear registration is considered as a local optimisation problem, which is solved using a Levenberg-Marquardt strategy. The necessary matrix solutions are obtained in reasonable time using a multigrid method. A constant Eulerian velocity framework is used, which allows a rapid scaling and squaring method to be used in the computations. DARTEL has been applied to intersubject registration of 471 whole brain images, and the resulting deformations were evaluated in terms of how well they encode the shape information necessary to separate male and female subjects and to predict the ages of the subjects.
                Bookmark

                Author and article information

                Journal
                Neuroimage
                Neuroimage
                Neuroimage
                Academic Press
                1053-8119
                1095-9572
                March 2012
                March 2012
                : 60
                : 1
                : 83-94
                Affiliations
                [a ]Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
                [b ]Unit of Functional Neurosurgery, Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
                [c ]LREN, Department des neurosciences cliniques - CHUV, UNIL; Lausanne, Switzerland
                Author notes
                [* ]Corresponding author. clambert112358@ 123456gmail.com
                Article
                YNIMG8960
                10.1016/j.neuroimage.2011.11.082
                3315017
                22173294
                a062ff66-b5d3-43ef-8b4a-05e60ef66895
                © 2012 Elsevier Inc.

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 25 August 2011
                : 28 October 2011
                : 24 November 2011
                Categories
                Article

                Neurosciences
                segmentation,sub-thalamic nucleus,hemiballismus,diffusion weighted imaging,connectivity

                Comments

                Comment on this article