27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Diverse Gait Dataset: Gait Segmentation Using Inertial Sensors for Pedestrian Localization with Different Genders, Heights and Walking Speeds

      , , ,
      Sensors
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stride length estimation is one of the most crucial aspects of Pedestrian Dead Reckoning (PDR). Due to the measurement noise of inertial sensors, individual variances of pedestrians, and the uncertainty in pedestrians walking, there is a substantial error in the assessment of stride length, which causes the accumulated deviation of Pedestrian Dead Reckoning (PDR). With the help of multi-gait analysis, which decomposes strides in time and space with greater detail and accuracy, a novel and revolutionary stride estimating model or scheme could improve the performance of PDR on different users. This paper presents a diverse stride gait dataset by using inertial sensors that collect foot movement data from people of different genders, heights, and walking speeds. The dataset contains 4690 walking strides data and 19,083 gait labels. Based on the dataset, we propose a threshold-independent stride segmentation algorithm called SDATW and achieve an F-measure of 0.835. We also provide the detailed results of recognizing four gaits under different walking speeds, demonstrating the utility of our dataset for helping train stride segmentation algorithms and gait detection algorithms.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Gait impairments in Parkinson's disease

          Gait impairments are among the most common and disabling symptoms of Parkinson's disease. Nonetheless, gait is not routinely assessed quantitatively but is described in general terms that are not sensitive to changes ensuing with disease progression. Quantifying multiple gait features (eg, speed, variability, and asymmetry) under natural and more challenging conditions (eg, dual-tasking, turning, and daily living) enhanced sensitivity of gait quantification. Studies of neural connectivity and structural network topology have provided information on the mechanisms of gait impairment. Advances in the understanding of the multifactorial origins of gait changes in patients with Parkinson's disease promoted the development of new intervention strategies, such as neurostimulation and virtual reality, aimed at alleviating gait impairments and enhancing functional mobility. For clinical applicability, it is important to establish clear links between specific gait impairments, their underlying mechanisms, and disease progression to foster the acceptance and usability of quantitative gait measures as outcomes in future disease-modifying clinical trials.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Pedestrian Tracking with Shoe-Mounted Inertial Sensors

            E. Foxlin (2005)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients.

              A detailed and quantitative gait analysis can provide evidence of various gait impairments in elderly people. To provide an objective decision-making basis for gait analysis, simple applicable tests analyzing a high number of strides are required. A mobile gait analysis system, which is mounted on shoes, can fulfill these requirements. This paper presents a method for computing clinically relevant temporal and spatial gait parameters. Therefore, an accelerometer and a gyroscope were positioned laterally below each ankle joint. Temporal gait events were detected by searching for characteristic features in the signals. To calculate stride length, the gravity compensated accelerometer signal was double integrated, and sensor drift was modeled using a piece-wise defined linear function. The presented method was validated using GAITRite-based gait parameters from 101 patients (average age 82.1 years). Subjects performed a normal walking test with and without a wheeled walker. The parameters stride length and stride time showed a correlation of 0.93 and 0.95 between both systems. The absolute error of stride length was 6.26 cm on normal walking test. The developed system as well as the GAITRite showed an increased stride length, when using a four-wheeled walker as walking aid. However, the walking aid interfered with the automated analysis of the GAITRite system, but not with the inertial sensor-based approach. In summary, an algorithm for the calculation of clinically relevant gait parameters derived from inertial sensors is applicable in the diagnostic workup and also during long-term monitoring approaches in the elderly population.
                Bookmark

                Author and article information

                Contributors
                Journal
                SENSC9
                Sensors
                Sensors
                MDPI AG
                1424-8220
                February 2022
                February 21 2022
                : 22
                : 4
                : 1678
                Article
                10.3390/s22041678
                35214579
                a0710b3e-25f3-4972-b62a-6c6334842fdd
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article