21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sodium Tanshinone IIA Sulfonate Decreases Cigarette Smoke-Induced Inflammation and Oxidative Stress via Blocking the Activation of MAPK/HIF-1α Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aberrant activation of hypoxia-inducible factor (HIF)-1α is frequently encountered and promotes oxidative stress and inflammation in chronic obstructive pulmonary disease (COPD). The present study investigated whether sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA, can mediate its effect through inhibiting HIF-1α–induced oxidative stress and inflammation in cigarette smoke (CS)-induced COPD in mice. Here, we found that STS improved pulmonary function, ameliorated emphysema and decreased the infiltration of inflammatory cells in the lungs of CS-exposed mice. STS reduced CS- and cigarette smoke extract (CSE)-induced upregulation of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the lungs and macrophages. STS also inhibited CSE-induced reactive oxygen species (ROS) production, as well as the upregulation of heme oxygenase (HO)-1, NOX1 and matrix metalloproteinase (MMP)-9 in macrophages. In addition, STS suppressed HIF-1α expression in vivo and in vitro, and pretreatment with HIF-1α siRNA reduced CSE-induced elevation of TNF-α, IL-1β, and HO-1 content in the macrophages. Moreover, we found that STS inhibited CSE-induced the phosphorylation of ERK, p38 MAPK and JNK in macrophages, and inhibition of these signaling molecules significantly repressed CSE-induced HIF-1α expression. It indicated that STS inhibits CSE-induced HIF-1α expression likely by blocking MAPK signaling. Furthermore, STS also promoted HIF-1α protein degradation in CSE-stimulated macrophages. Taken together, these results suggest that STS prevents COPD development possibly through the inhibition of HIF-1α signaling, and may be a novel strategy for the treatment of COPD.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIF-1alpha is essential for myeloid cell-mediated inflammation.

            Granulocytes and monocytes/macrophages of the myeloid lineage are the chief cellular agents of innate immunity. Here, we have examined the inflammatory response in mice with conditional knockouts of the hypoxia responsive transcription factor HIF-1alpha, its negative regulator VHL, and a known downstream target, VEGF. We find that activation of HIF-1alpha is essential for myeloid cell infiltration and activation in vivo through a mechanism independent of VEGF. Loss of VHL leads to a large increase in acute inflammatory responses. Our results show that HIF-1alpha is essential for the regulation of glycolytic capacity in myeloid cells: when HIF-1alpha is absent, the cellular ATP pool is drastically reduced. The metabolic defect results in profound impairment of myeloid cell aggregation, motility, invasiveness, and bacterial killing. This role for HIF-1alpha demonstrates its direct regulation of survival and function in the inflammatory microenvironment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chronic obstructive pulmonary disease: molecular and cellular mechanisms.

              Chronic obstructive pulmonary disease is a leading cause of death and disability, but has only recently been extensively explored from a cellular and molecular perspective. There is a chronic inflammation that leads to fixed narrowing of small airways and alveolar wall destruction (emphysema). This is characterised by increased numbers of alveolar macrophages, neutrophils and cytotoxic T-lymphocytes, and the release of multiple inflammatory mediators (lipids, chemokines, cytokines, growth factors). A high level of oxidative stress may amplify this inflammation. There is also increased elastolysis and evidence for involvement of several elastolytic enzymes, including serine proteases, cathepsins and matrix metalloproteinases. The inflammation and proteolysis in chronic obstructive pulmonary disease is an amplification of the normal inflammatory response to cigarette smoke. This inflammation, in marked contrast to asthma, appears to be resistant to corticosteroids, prompting a search for novel anti-inflammatory therapies that may prevent the relentless progression of the disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                01 May 2018
                2018
                : 9
                : 263
                Affiliations
                [1] 1State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University , Guangzhou, China
                [2] 2Departments of Respiratory and Critical Diseases, Inner Mongolia Autonomous Region People’s Hospital , Hohhot, China
                [3] 3Department of Clinical Medical Research Center, Inner Mongolia Autonomous Region People’s Hospital , Hohhot, China
                Author notes

                Edited by: Giuseppa Pistritto, Università degli Studi di Roma Tor Vergata, Italy

                Reviewed by: Sathyamangla Naga Prasad, Cleveland Clinic Lerner College of Medicine, United States; Arunava Roy, University of South Florida, United States

                *Correspondence: Dejun Sun, nmg_sdj@ 123456163.com Wenju Lu, wlu92@ 123456yahoo.com

                These authors have contributed equally to this work.

                This article was submitted to Respiratory Pharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2018.00263
                5938387
                29765317
                a077551c-4185-42f1-8310-2d460b4786ff
                Copyright © 2018 Guan, Wang, Li, Ding, Li, Xu, Wang, Chen, Yang, Long, Cai, Zhang, Liang, Dong, Zhao, Zhang, Sun and Lu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 November 2017
                : 09 March 2018
                Page count
                Figures: 9, Tables: 0, Equations: 0, References: 57, Pages: 13, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81520108001
                Award ID: 81770043
                Award ID: 81220108001
                Funded by: China Postdoctoral Science Foundation 10.13039/501100002858
                Award ID: 2017M612637
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                sodium tanshinone iia sulfonate,copd,cigarette smoke,hypoxia-inducible factor-1α,inflammation,oxidative stress

                Comments

                Comment on this article