55
views
0
recommends
+1 Recommend
3 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Transmission dynamics of the COVID‐19 outbreak and effectiveness of government interventions: A data‐driven analysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Using the parameterized susceptible‐exposed‐infectious‐recovered model, we simulated the spread dynamics of coronavirus disease 2019 (COVID‐19) outbreak and impact of different control measures, conducted the sensitivity analysis to identify the key factor, plotted the trend curve of effective reproductive number ( R), and performed data fitting after the simulation. By simulation and data fitting, the model showed the peak existing confirmed cases of 59 769 arriving on 15 February 2020, with the coefficient of determination close to 1 and the fitting bias 3.02%, suggesting high precision of the data‐fitting results. More rigorous government control policies were associated with a slower increase in the infected population. Isolation and protective procedures would be less effective as more cases accrue, so the optimization of the treatment plan and the development of specific drugs would be of more importance. There was an upward trend of R in the beginning, followed by a downward trend, a temporary rebound, and another continuous decline. The feature of high infectiousness for severe acute respiratory syndrome coronavirus 2(SARS‐CoV‐2) led to an upward trend, and government measures contributed to the temporary rebound and declines. The declines of R could be exploited as strong evidence for the effectiveness of the interventions. Evidence from the four‐phase stringent measures showed that it was significant to ensure early detection, early isolation, early treatment, adequate medical supplies, patients’ being admitted to designated hospitals, and comprehensive therapeutic strategy. Collaborative efforts are required to combat the novel coronavirus, focusing on both persistent strict domestic interventions and vigilance against exogenous imported cases.

          Research Highlights

          • The SEIR model showed the peak existing confirmed cases of 59769 arriving on 15 February 2020, with high precision of the data fitting results. The dynamic changes of R values were taken into account on different scenarios of the epidemic. The declines of R indicated the effectiveness of the four‐phase government interventions. Given the situation of pandemic potential, the stringent measures by Chinese government could be referential and enlightening to the other countries suffering from COVID‐19.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China

            In December 2019, novel coronavirus (2019-nCoV)-infected pneumonia (NCIP) occurred in Wuhan, China. The number of cases has increased rapidly but information on the clinical characteristics of affected patients is limited.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A pneumonia outbreak associated with a new coronavirus of probable bat origin

              Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
                Bookmark

                Author and article information

                Contributors
                colourwind1035@126.com
                Journal
                J Med Virol
                J. Med. Virol
                10.1002/(ISSN)1096-9071
                JMV
                Journal of Medical Virology
                John Wiley and Sons Inc. (Hoboken )
                0146-6615
                1096-9071
                16 March 2020
                : 10.1002/jmv.25750
                Affiliations
                [ 1 ] School of Public Health Hangzhou Medical College Hangzhou China
                [ 2 ] Graduate School Harbin Medical University Harbin China
                [ 3 ] Department of Public Health Sciences California Baptist University Riverside California
                Author notes
                [*] [* ] Correspondence Yaqing Fang, School of Public Health, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China.

                Email: colourwind1035@ 123456126.com

                Author information
                http://orcid.org/0000-0002-9963-4462
                Article
                JMV25750
                10.1002/jmv.25750
                7228381
                32141624
                a077d3cb-5435-48b7-aa40-69af8b75e3f6
                © 2020 Wiley Periodicals, Inc.

                This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

                History
                : 25 February 2020
                : 04 March 2020
                Page count
                Figures: 17, Tables: 1, Pages: 15, Words: 6168
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                corrected-proof
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.8.0 mode:remove_FC converted:15.04.2020

                Microbiology & Virology
                basic reproductive number,covid‐19,data fitting,data simulation,effective reproductive number,effectiveness,intervention,sars‐cov‐2,seir,sensitivity analysis,transmission

                Comments

                Comment on this article