1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultrastructural Sperm Flagellum Defects in a Patient With CCDC39 Compound Heterozygous Mutations and Primary Ciliary Dyskinesia/ Situs Viscerum Inversus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disease characterized by structural or functional motile cilia abnormalities. Up to 40 different genes seem, at the moment, to be involved in the pathogenesis of PCD. A number of ultrastructural defects have also been reported in sperm flagella, but the sperm mitochondrial membrane potential (MMP) has never been described in these cases.

          Aim: The aim of this study was to report the sperm MMP and ultrastructural abnormalities of the sperm flagella found in a patient with PCD and situs inversus (Kartagener syndrome) and its characterization from the genetic point of view.

          Methods: Transmission electronic microscopy (TEM) analysis was used to evaluate flagella ultrastructure. The genetic testing was performed by next-generation sequencing. Sperm DNA fragmentation and MMP were also evaluated by flow cytometry.

          Results: We report here the case of an 18-year-old male patient with PCD and situs inversus and severe oligo-astheno-teratozoospermia. TEM analysis of his spermatozoa showed an abnormal connecting piece. The mid piece appeared abnormally thickened, with cytoplasmic residue, dysplasia of fibrous sheath, loss of the outer dynein arms (ODAs), truncated inner dynein arms, and supernumerary outer fibers. The percentage of spermatozoa with fragmented DNA was normal, whereas a high percentage of spermatozoa had low MMP, suggesting an altered mitochondrial function. The genetic analysis showed the presence of c.610-2A > G, p.Arg811Cys compound heterozygous mutations in the CCDC39 gene.

          Conclusion: The case herein reported suggests that the high percentage of sperm with low MMP may play a role in the pathogenesis of asthenozoospermia in patients with Kartagener syndrome. In addition, we report, for the first time, the missense variant p.Arg811Cys in the CCDC39 gene in a patient with Kartagener syndrome. Although in silico analysis predicts its damaging potential, its clinical meaning remains unclear.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs.

          Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by recurrent infections of the upper and lower respiratory tract, reduced fertility in males and situs inversus in about 50% of affected individuals (Kartagener syndrome). It is caused by motility defects in the respiratory cilia that are responsible for airway clearance, the flagella that propel sperm cells and the nodal monocilia that determine left-right asymmetry. Recessive mutations that cause PCD have been identified in genes encoding components of the outer dynein arms, radial spokes and cytoplasmic pre-assembly factors of axonemal dyneins, but these mutations account for only about 50% of cases of PCD. We exploited the unique properties of dog populations to positionally clone a new PCD gene, CCDC39. We found that loss-of-function mutations in the human ortholog underlie a substantial fraction of PCD cases with axonemal disorganization and abnormal ciliary beating. Functional analyses indicated that CCDC39 localizes to ciliary axonemes and is essential for assembly of inner dynein arms and the dynein regulatory complex.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation.

            Primary ciliary dyskinesia (PCD) is a rare, usually autosomal recessive, genetic disorder characterized by ciliary dysfunction, sino-pulmonary disease, and situs inversus. Disease-causing mutations have been reported in DNAI1 and DNAH5 encoding outer dynein arm (ODA) proteins of cilia. We analyzed DNAI1 to identify disease-causing mutations in PCD and to determine if the previously reported IVS1+2_3insT (219+3insT) mutation represents a "founder" or "hot spot" mutation. Patients with PCD from 179 unrelated families were studied. Exclusion mapping showed no linkage to DNAI1 for 13 families; the entire coding region was sequenced in a patient from the remaining 166 families. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed on nasal epithelial RNA in 14 families. Mutations in DNAI1 including 12 novel mutations were identified in 16 of 179 (9%) families; 14 harbored biallelic mutations. Deep intronic splice mutations were not identified by reverse transcriptase-polymerase chain reaction. The prevalence of mutations in families with defined ODA defect was 13%; no mutations were found in patients without a defined ODA defect. The previously reported IVS1+2_3insT mutation accounted for 57% (17/30) of mutant alleles, and marker analysis indicates a common founder for this mutation. Seven mutations occurred in three exons (13, 16, and 17); taken together with previous reports, these three exons are emerging as mutation clusters harboring 29% (12/42) of mutant alleles. A total of 10% of patients with PCD are estimated to harbor mutations in DNAI1; most occur as a common founder IVS1+2_3insT or in exons 13, 16, and 17. This information is useful for establishing a clinical molecular genetic test for PCD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myoinositol: does it improve sperm mitochondrial function and sperm motility?

              To evaluate whether an improvement in mitochondrial membrane potential was associated with sperm motility amelioration and greater sperm recovery after the swim-up procedure. A second purpose was to evaluate the effects of myoinositol (MYO) on sperm apoptosis, quality of chromatin compaction, and DNA integrity. Spermatozoa from 20 normozoospermic men and 20 patients with oligo-astheno-teratozoospermia were incubated in vitro with 2 mg/mL of MYO or phosphate-buffered saline as a control for 2 hours. After this incubation period, sperm motility was evaluated. Flow cytometry was used to analyze the mitochondrial membrane potential, phosphatidylserine externalization, chromatin compactness, and DNA fragmentation. We also evaluated the total number of motile spermatozoa recovered after swim-up after incubation with MYO or phosphate-buffered saline. MYO significantly increased the percentage of spermatozoa with progressive motility in both normozoospermic men and patients with oligo-astheno-teratozoospermia. Motility improvement in the latter group was associated with a significant increase in the percentage of spermatozoa with high mitochondrial membrane potential. MYO had no effects on mitochondrial function in spermatozoa from normozoospermic men. Sperm phosphatidylserine externalization, chromatin compactness, and DNA fragmentation were unaffected by MYO in both groups. After incubation with MYO, the total number of spermatozoa recovered after swim-up had improved significantly in both groups. These data show that MYO increases sperm motility and the number of spermatozoa retrieved after swim-up in both normozoospermic men and patients with abnormal sperm parameters. In patients with oligo-astheno-teratozoospermia, the improvement in these parameters was associated with improved sperm mitochondrial function. These findings support the use of MYO in both in vivo- and in vitro-assisted reproductive techniques. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                28 August 2020
                2020
                : 11
                : 974
                Affiliations
                [1] 1Department of Clinical and Experimental Medicine, University of Catania , Catania, Italy
                [2] 2MAGI EUREGIO , Bolzano, Italy
                [3] 3Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania , Catania, Italy
                Author notes

                Edited by: Zahurul Alam Bhuiyan, Centre Hospitalier Universitaire Vaudois (CHUV), Switzerland

                Reviewed by: Pamela Magini, Sant’Orsola-Malpighi Polyclinic, Italy; Heon Yung Gee, Yonsei University, South Korea

                *Correspondence: Rossella Cannarella, rossella.cannarella@ 123456phd.unict.it
                Aldo Eugenio Calogero, acaloger@ 123456unict.it

                This article was submitted to Genetics of Common and Rare Diseases, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2020.00974
                7483550
                33005176
                a07897d2-c365-4efe-b2a7-4de897b5297b
                Copyright © 2020 Cannarella, Maniscalchi, Condorelli, Scalia, Guerri, La Vignera, Bertelli and Calogero.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 October 2019
                : 31 July 2020
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 37, Pages: 14, Words: 0
                Categories
                Genetics
                Case Report

                Genetics
                primary ciliary dyskinesia,kartagener syndrome,ccdc39,ccdc151,situs inversus,asthenozoospermia

                Comments

                Comment on this article