6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      DNA alterations in rat organs after chronic exposure to cigarette smoke and/or ethanol ingestion.

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In spite of the epidemiological evidence supporting a synergism between alcohol consumption and cigarette smoking in the pathogenesis of cancers of the aerodigestive tract, there is a paucity of experimental studies evaluating the effects of these agents under well-controlled conditions and exploring the mechanisms involved. We exposed groups of female BD6 rats, aged 8 months, to ethanol (5% in drinking water for 8 consecutive months) and/or whole-body to mainstream cigarette smoke (1 h/day, 5 days/week for 8 months). DNA was purified from different organs and analyzed for the presence of DNA-protein crosslinks and 32P-postlabeled DNA adducts after butanol enrichment. No significant increase of DNA-protein crosslinks, compared to untreated controls, was induced by any treatment in liver, lung, or heart. 'Spontaneous' nucleotidic modifications were detected by 32P-postlabeling in organs of untreated rats, with the highest levels occurring in the heart. Ingestion of ethanol did not affect DNA adduct levels in any of the organs examined: esophagus, liver, lung, and heart. Exposure to cigarette smoke induced formation of DNA adducts in the lung and heart, but not in the esophagus or liver. The combined ingestion of ethanol resulted in a significant formation of smoke-related DNA adducts in the esophagus and in their further, dramatic increase in the heart. It thus appears that ethanol consumption increases the bioavailability of DNA binding smoke components in the upper digestive tract and favors their systemic distribution. The mechanisms responsible for the interaction between ethanol and smoke and for the selective localization of DNA alterations in different organs are discussed. Formation of DNA adducts in the organs examined may be relevant in the pathogenesis of lung and esophageal cancers as well as in the pathogenesis of other types of chronic degenerative diseases, such as chronic obstructive pulmonary diseases and cardiomyopathies.

          Related collections

          Author and article information

          Journal
          FASEB J.
          FASEB journal : official publication of the Federation of American Societies for Experimental Biology
          0892-6638
          0892-6638
          Jun 1998
          : 12
          : 9
          Affiliations
          [1 ] Institute of Hygiene and Preventive Medicine, University of Genoa, Italy.
          Article
          9619454
          a080ca0e-6ee9-4b54-becf-17bd8ee554dd
          History

          Comments

          Comment on this article