Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Primary validation of Charm II tests for the detection of antimicrobial residues in a range of aquaculture fish

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study carried out a primary validation of Charm II tests for the detection of antimicrobial residues in aquaculture fish. The validation was performed according to European Commission Decision 2002/657/ EC and the parameters determined included: detection capability, repeatability, reproducibility, specificity and robustness for the detection of antimicrobial residues in fish. Fish materials from different species including cat fish, trout, salmon, sea bass, tilapia, lingue and pangasius, were spiked with varying concentrations of selected antimicrobials including sulfonamides, β-lactams, macrolides, tetracyclines and aminoglycosides to determine the detection capabilities and other validation parameters of the Charm II tests. Results of the validation showed that the detection capabilities for the tetracyclines ranged from 25 to 100 µg/kg, while the sulfonamides and aminoglycosides were detected at 25 µg/kg for all species under study. The detection capabilities for the beta-lactams ranged from 25 to 300 µg/kg; and was 100 µg/kg for the tested macrolides. Results of the study showed that there was no significant difference between counts for samples read immediately after addition of the scintillation liquid and those read 14 h after addition of the scintillation liquid, provided that there was good vortexing before analysis. There was also no significant difference between counts for the same samples analyzed in different runs under repeatability and reproducibility conditions at the same spiking concentrations for the different fish species analyzed. The relative standard deviation for both repeatability and reproducibility ranged from 1.2 to 15.1%. The Charm II tests were found to be 100% group specific, as none of the antimicrobials kits, gave false positive results when testing non-target antimicrobial drugs. Results of this study demonstrate the suitability of the Charm II technique as a rapid screening tool for detection of antimicrobial residues in a variety of fish species at maximum residue limits (MRL) established in the EU guidelines, with the exception of tilmicosin which was detected at 2 MRL. The results also prove the robustness, specificity, reliability and precision of the Charm II assay in the detection of various antimicrobial residuals in fish and its applicability for the rapid evaluation of the quality of aquaculture fish for safety and trade purposes.

          Related collections

          Most cited references 20

          • Record: found
          • Abstract: found
          • Article: not found

          Food animals and antimicrobials: impacts on human health.

          Antimicrobials are valuable therapeutics whose efficacy is seriously compromised by the emergence and spread of antimicrobial resistance. The provision of antibiotics to food animals encompasses a wide variety of nontherapeutic purposes that include growth promotion. The concern over resistance emergence and spread to people by nontherapeutic use of antimicrobials has led to conflicted practices and opinions. Considerable evidence supported the removal of nontherapeutic antimicrobials (NTAs) in Europe, based on the "precautionary principle." Still, concrete scientific evidence of the favorable versus unfavorable consequences of NTAs is not clear to all stakeholders. Substantial data show elevated antibiotic resistance in bacteria associated with animals fed NTAs and their food products. This resistance spreads to other animals and humans-directly by contact and indirectly via the food chain, water, air, and manured and sludge-fertilized soils. Modern genetic techniques are making advances in deciphering the ecological impact of NTAs, but modeling efforts are thwarted by deficits in key knowledge of microbial and antibiotic loads at each stage of the transmission chain. Still, the substantial and expanding volume of evidence reporting animal-to-human spread of resistant bacteria, including that arising from use of NTAs, supports eliminating NTA use in order to reduce the growing environmental load of resistance genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment.

            The accelerated growth of finfish aquaculture has resulted in a series of developments detrimental to the environment and human health. The latter is illustrated by the widespread and unrestricted use of prophylactic antibiotics in this industry, especially in developing countries, to forestall bacterial infections resulting from sanitary shortcomings in fish rearing. The use of a wide variety of antibiotics in large amounts, including non-biodegradable antibiotics useful in human medicine, ensures that they remain in the aquatic environment, exerting their selective pressure for long periods of time. This process has resulted in the emergence of antibiotic-resistant bacteria in aquaculture environments, in the increase of antibiotic resistance in fish pathogens, in the transfer of these resistance determinants to bacteria of land animals and to human pathogens, and in alterations of the bacterial flora both in sediments and in the water column. The use of large amounts of antibiotics that have to be mixed with fish food also creates problems for industrial health and increases the opportunities for the presence of residual antibiotics in fish meat and fish products. Thus, it appears that global efforts are needed to promote more judicious use of prophylactic antibiotics in aquaculture as accumulating evidence indicates that unrestricted use is detrimental to fish, terrestrial animals, and human health and the environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human health consequences of use of antimicrobial agents in aquaculture.

              Intensive use of antimicrobial agents in aquaculture provides a selective pressure creating reservoirs of drug-resistant bacteria and transferable resistance genes in fish pathogens and other bacteria in the aquatic environment. From these reservoirs, resistance genes may disseminate by horizontal gene transfer and reach human pathogens, or drug-resistant pathogens from the aquatic environment may reach humans directly. Horizontal gene transfer may occur in the aquaculture environment, in the food chain, or in the human intestinal tract. Among the antimicrobial agents commonly used in aquaculture, several are classified by the World Health Organisation as critically important for use in humans. Occurrence of resistance to these antimicrobial agents in human pathogens severely limits the therapeutic options in human infections. Considering the rapid growth and importance of aquaculture industry in many regions of the world and the widespread, intensive, and often unregulated use of antimicrobial agents in this area of animal production, efforts are needed to prevent development and spread of antimicrobial resistance in aquaculture to reduce the risk to human health.
                Bookmark

                Author and article information

                Contributors
                emmanuel@cns.mak.ac.ug
                Journal
                BMC Chem
                BMC Chem
                BMC Chemistry
                Springer International Publishing (Cham )
                2661-801X
                25 April 2020
                25 April 2020
                December 2020
                : 14
                : 1
                Affiliations
                [1 ]Uganda National Bureau of Standards, Headquarters. Plot 2–12 Bypass Link, Industrial & Business Park, Kyaliwajala Road, P.O. Box 6329, Kampala, Uganda
                [2 ]Institute of Medical Research and Medicinal Plant Studies, P.O. Box 6163, Yaounde, Cameroon
                [3 ]GRID grid.420221.7, ISNI 0000 0004 0403 8399, International Atomic Energy Agency (IAEA), Vienna International Centre, ; P. O. Box 100, 1400 Vienna, Austria
                [4 ]Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
                [5 ]GRID grid.11194.3c, ISNI 0000 0004 0620 0548, Department of Chemistry, College of Natural Sciences, , Makerere University, ; P.O. Box, 7062, Kampala, Uganda
                Article
                684
                10.1186/s13065-020-00684-4
                7183640
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004493, International Atomic Energy Agency;
                Award ID: D52039
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                Comments

                Comment on this article